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PREFACE

SINCE its discovery in 1958 as a carbon monoxide-binding pigment in liver microsomes,
the number of scientific papers published yearly on studies directly related to this hemo-
protein have increased almost logarithmically. This great rate of interest has been, in
part, due to the excitement generated by the opening of a new field as well as the great
energy of the fairly young group of investigators involved.

From its detection in 1958, recognition as a hemoprotein in 1962, and determination of
function in 1963, to its solubilization and reconstitution in 1968 was but a short ten
years. Even so, the pace has increased to the point where attempts to compile a book on
the enzyme system have been thwarted by the speed of obsolescence of reviews.

It has been our purpose to provide both a historical and prospective view of selected
areas of the hepatic microsomal enzyme system, picking the liver as a tissue with which
we are both familiar and since much of the advances in the field have been with this
enzyme system. Enough differences exist between the cytochrome P-450 enzyme systems
of microorganisms, mitochondria and other tissue and species as to make an all-embrac-
ing text an impossible task. Perhaps our omissions will encourage other would-be
authors to fill the void.

Our goal was to develop an in-depth coverage of each component of the enzyme
system and of its functions, but also to provide enough background and history to be an
aid to the student or investigator newly entering the field. In soliciting material every
attempt was made to obtain leading investigators in the field to provide chapters on their
areas of expertise. Considerable efforts were also made to include contributions from
younger investigators whose studies have begun to make impact on the field.

Today studies on the mixed function oxidase are carried out by investigators in many
fields, including anatomy (histology), bacteriology, biochemistry, biology, biophysics,
chemistry, environmental sciences, medicine, pharmacy, pharmacology, therapeutics and
toxicology. Alphabetically, with careful searching we could probably find other fields in
which cytochrome P-450 has generated excitement. Hopefully, our efforts will prove a
benefit in these fields, by providing a ready source of information.

JoHN B. SCHENKMAN
and

Davip KUPFER

19 May 1980
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INTRODUCTION

A BRIEF HISTORY OF CYTOCHROME P-450

JOHN B. SCHENKMAN

Farmington, Connecticut, USA

Hemoproteins seem to hold some fascination for scientists. As a group hemoproteins are
one of the more heavily studied biological compounds. Perhaps this is because they are
colored and readily observed. Certainly, interest was strengthened by the early obser-
vations that cellular pigments hold a key role in respiratory activity and thus in the
process of life itself.

Studies on hemoglobins were carried out in the early part of 1800 while studies on
tissue pigments (histohaematin) date back to early spectrophotometric analyses of Mac-
Munn in the 1880s up through the early 1900’s, when the individuality of the mitochon-
drial cytochromes was recognized (Keilin, 1966). The microsomes (small bodies), seen as
membranous vesicles after disruption of the liver, were isolated by differential centrifuga-
tion and were named by Albert Claude (Claude, 1940). Many years passed, however,
before these vesicles were shown to be derived from the endoplasmic reticulum (Palade
and Siekevitz, 1956).

Early studies on the microsomal fraction revealed the presence of a protoporphyrin
containing hemoprotein (Strittmatter and Ball, 1952; Yoshikawa, 1951). The properties of
this protein were described and although variously named, cytochrome m (Strittmatter
and Ball, 1954) and cytochrome b’ (Yoshikawa, 1951), it came to bear the name cyto-
chrome b (Chance and Williams, 1954).

It is of interest to follow some of the threads in the microsomal electron transfer
enzyme story. Britton Chance was Professor and Director of the Johnson Foundation at
the University of Pennsylvania School of Medicine, when joined by A. M. Pappenheimer,
a visitor from New York University. Pappenheimer had described the presence and
involvement of cytochrome bs in NADH oxidase activity in Cecropia silk worm (Pap-
penheimer and Williams, 1954) while at Harvard. At the Johnson Foundation the kin-
etics and spectroscopy of cytochrome bs in the midgut of Cecropia were described
(Chance and Pappenheimer, 1954). Chance observed that the hemoprotein was the same
as that found in rat liver microsomes and proceeded to study the kinetics of cytochrome
bs in rat liver microsomes (Chance and Williams, 1954). Shortly thereafter David Garfin-
kel, then a postdoctoral fellow at the Johnson Foundation, reported on the properties of
cytochrome bj isolated from rabbit liver microsomes. In his note (Garfinkel, 1956), he
stated that although 50-90% of the cytochrome by was solubilized from the microsomes,
the sedimented microsomal pellet contained much of the red color of the original micro-
somes. Contemporary with Garfinkel at the Johnson Foundation at that time were
Martin Klingenberg, a Visiting Scientist from the University of Marburg, Germany, Ryo
Sato, a Visiting Professor from Osaka University Institute for Protein Research, and
Ronald W. Estabrook a Research Associate.

In the initial studies on solubilization of cytochrome bs, by Strittmatter and Ball
(1952), 19, deoxycholate was used. Microsomal pellets after this treatment were colorless,
and from the pyridine hemochrome yield of 1.45 nmoles hemes per milligram microsomal
proteins, both cytochrome P-450 (P-420) and cytochrome bs must have been solubilized.
Of interest was their observation that “equilibrium of a reduced solution with carbon
monoxide did not cause a shift of the absorption peaks”. Had such a shift been observed
then, cytochrome P-450 would have been reported six years earlier than it was. From the
elevated pyridine hemochrome levels, it is clear that both hemoproteins were removed
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from the microsomes and were present in the extract. Similarly the lack of follow-up of
the red pigment remaining in microsomes after up to 90% of the cytochrome bs was
removed by lipase (Garfinkel, 1956) delayed discovery of cytochrome P-450.

Recognition of the presence of the carbon monoxide binding pigment was attributed to
G. R. Williams by Klingenberg (1958) who reported that when the ratio of pyridine
hemochromogen to cytochrome bs was determined for liver microsomes, a value of 2.15
was obtained, i.e., there was 1.15 nanomoles of excess protohemin. In this paper is the
first published spectra and report of a carbon monoxide binding pigment in the micro-
somes. It was obtained on addition of carbon monoxide to microsomes reduced with
either NADH or dithionite (Na,S,0,).

In his study, Klingenberg (1958) pointed out that carbon monoxide addition com-
pound is not stable to 29 cholate or 1%, deoxycholate, which would explain why Stritt-
matter and Ball (1952) did not observe the pigment when they gassed the reduced
deoxycholate extracts of microsomes with carbon monoxide. As was shown later (Omura
and Sato, 1962; 1964b) reduced cytochrome P-420 is destroyed by oxygen, i.e., by aera-
tion when bubbling with carbon monoxide after reduction. If the solution had been
saturated with carbon monoxide first and then reduced with diethionite, perhaps cyto-
chrome P-420 would have been seen. Less than half a year later, Garfinkel (1958) also
reported on the pigment, suggesting on the basis of the binding of carbon monoxide and
cyanide, that it contained a metal ion, but because the pigment had no alpha or beta
peaks and showed no photodissociation of the CO complex, that it was probably not an
iron hemoprotein.

Ryo Sato returned to Japan where he was studying, among other things, solubilization
of the liver microsomal-xenobiotic hydroxylase. With Tsuneo Omura, Sato began investi-
gating the carbon monoxide binding pigment in 1960 (Sato and Omura, 1978), and by
1962 had obtained evidence that the pigment was a protoheme cytochrome (Omura and
Sato, 1962). In that report the pigment was, “provisionally called cytochrome P-450, a
new cytochrome of unusual properties”. Omura and Sato began attempts to fractionate
and solubilize the microsomal hemoproteins, and concluded cytochrome bs and cyto-
chrome P-450 together account for the total microsomal heme content (Omura and Sato,
1963). However, it wasn’t until 1968, that successful separation and solubilization of
cytochrome P-450 was achieved (Lu et al., 1968).

Reports from several laboratories rapidly confirmed earlier observations by Sladek
and Mannering (1966) that 3-methylcholanthrene induces a new form of cytochrome
P-450. Suggestions soon appeared that many isozymes of the hemoprotein exist (Welton
and Aust, 1974; Welton et al., 1975; Haugen et al., 1975; Thomas et al., 1976).

Like Klingenberg (1958), Omura and Sato (1964a) were unable to obtain photodisso-
ciation of the CO complex of cytochrome P-450. The earliest measurement of photodis-
sociation was of the dithionite reduced CO complex of clarified cytochrome P-450
(Omura et al,, 1965), in a collaboration with Q. Gibson at the Johnson Foundation,
where photodissociation was obtained. It was not clear whether this was with the liver
microsomal or the adrenal cortical mitochondrial cytochrome P-450 (11-B-hydroxylase),
since in that report several systems were studied.

In 1964 Omura joined Estabrook, Rosenthal and Cooper at the Johnson Foundation
and the Harrison Department of Surgical Research of the University of Pennsylvania
(Cooper, 1973). Cooper had been studying the adrenal cortical microsomal steroid hy-
droxylase and was having difficulty in obtaining a good stoichiometry for the reaction.
He joined forces with Ronald W. Estabrook then an Assistant Professor at the Johnson
Foundation for Medical Physics, who had just developed a new sensitive fluorimetric
assay for pyridine nucleotides. This was the first step of a successful collaboration, and
answered the question of the stoichiometry of the C,, steroid hydroxylase (Cooper et al.,
1963). By 1963 their collaboration led to testing the light reversibility of the carbon
monoxide inhibition of C,,-hydroxylation of 17-hydroxy progesterone by adrenocortical
microsomes (Estabrook et al., 1963). Together they showed a maximal degree of reversi-
bility by light of 450 nm of the carbon monoxide inhibition of cortexolone formation,
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and concluded, “these results support the hypothesis that the 450 mu CO compound
observed spectrophotometrically functions in oxygen activation for the hydroxylase reac-
tion”. The photochemical action spectrum first generated by Estabrook et al. (1963) was
obtained from carbon monoxide inhibited adrenal cortex microsomes. Later, similar
photochemical action spectra were obtained with liver microsomes for codeine metab-
olism (Cooper et al., 1965a).

In December of 1964 I joined the laboratory of Ronald Estabrook at the Johnson
Foundation, then the Department of Biophysics and Physical Biochemistry of the Uni-
versity of Pennsylvania School of Medicine. My stay there overlapped by about a year
that of Omura, who subsequently left to work with Philip Siekevitz at the Rockefeller
Institute. Estabrook and I examined the effect of drug substrates on the EPR and
UV-visible spectrophotometric properties of the mixed function oxidase. Shakunthala
Narasimhulu, a Research Associate with David Y. Cooper for a few years, had been
studying the properties of the adrenal cortical microsomal mixed function oxidase. She
observed (Narasimhulu et al., 1965; Cooper et al., 1965b) that steroid substrate addition
caused a change in the microsomal difference spectrum which was substrate dependent.
These spectral changes were characterized by a drop in absorbance at 420 nm and a peak
at 390 nm. An important observation was also made that the substrate, when added,
enhances electron flow from TPNH to cytochrome P-450 in the adrenal microsomes
(Narasimhulu et al., 1965). While examining the effect of drug substrates of the monooxy-
genase in liver microsomes, we observed similar spectral changes. At Estabrook’s invita-
tion, Henry Sasame and James R. Gillette visited the Johnson Foundation for a brain
session of the meaning of the spectral changes. Also present was Herbert Remmer, then a
visiting Professor from Tiibingen, Germany. Working late into the night a consensus
conclusion was reached that the substrate induced spectral changes were due to forma-
tion of an enzyme-substrate complex; a report was sent to Molecular Pharmacology. In
that short communication, (Remmer et al., 1966) all bases were touched: Substrates were
suggested as substituting for a ligand of the heme, and the two types of spectral changes
seen were considered as two types of conformational change, perhaps by ligand binding
to opposite sides of the heme. An alternative suggestion similar to that of Narasimhulu et
al., 1965 was also considered, involving conversion of an oxygenated form of cytochrome
P-450 to an oxidized form (an analogy with peroxidases). Similar observations were
made by Imai and Sato (1966) of spectral changes on addition of substrates to rabbit
liver microsomes. The spectral changes were later named Type I and Type II spectral
changes (Schenkman et al., 1967).

At about the same time cytochrome P-450 was also generating excitement on the
international scene. In Germany, Remmer had shown barbiturates to induce the micro-
somal drug oxidase (Remmer, 1959). In Sweden, Ernster’s group showed induction to be
related to elevation of the microsomal content of cytochrome P-450 (Orrenius et al.,
1965). In Australia, Appleby had isolated a soluble form of cytochrome P-450 from
Rhysobium japonicum (Appleby, 1967). In the U.S, cytochrome P-450 was shown to
resemble a low spin hemoprotein by electron spin resonance (ESR) spectroscopy (Hashi-
moto et al., 1962; Mason et al., 1965). With pseudomonas cytochrome P-450 a Type 1
substrate (camphor) was shown to decrease the amount of low spin cytochrome ESR
signal (Gunsalus, 1968). In Japan (Mitani and Horie, 1969) and in the U.S. (Whysner et
al., 1969) investigators showed the substrate induced type I spectral change was related to
spin state changes of the cytochrome.

Today the excitement in research on cytochrome P-450 shows no signs of abating.
Many more researchers in many other countries, too numerous to mention here, have
joined in the study on the properties of the cytochrome. From early pharmacological
studies on drug metabolism in vivo, the field moved to biochemical studies on the enzyme
kinetics, through enzyme purification and system reconstitution to current investigations
on the thermodynamics of P-450. One can easily see there are many fruitful years of
research left on this hemoprotein. As newer techniques are applied to it an even greater
understanding of its properties and functions will be obtained.



