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Chapter 1
Introduction

Conservation laws arise from the modeling of physical processes
through the following three steps:

1) The appropriate physical balance laws are derived for m-physi-
cal quantities, Upseeeslp with u = t(ul,...,um) and u(x,t) defined
for x = (xl,...,xN) € RN (N=1,2, or 3), t >0 and with the values
u(x,t) lying in an open subset, G, of Rm, the state space. The state
space G arises because physical quantities such as the density or total
energy should always be positive; thus the values of u are often con-
strained to an open set G.

2) The flux functions appearing in these balance laws are idealized
through prescribed nonlinear functions, Fj(u), mapping G into R®,
j=1,...,N while source terms are defined by S(u,x,t) with S a
given smooth function of these arguments with values in R®. In particu-
lar, the detailed microscopic effects of diffusion and dissipation are
ignored.

3) A generalized version of the principle of virtual work is applied
(see Antman [1}).

The formal result of applying the three steps (1)-(3) is that the m
physical quantities u define a weak solution of an m x m system of

conservation laws,

N
0= I (b, -u + Y. -F.(u) + ¢-S(u,x,t))dxde 1.1
AL SR A ') (1.1)
for all ¥ € Gy x R"), ¥(x,t) € R®.
A beautiful discussion of the logical subtlety involved in the pro-
cess (1)-(3) in a single space variable can be found in the article by
Antman ([1]). If one is willing to assume at the outset that u is
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bounded and is a function of bounded variation, i.e., the first distribu-
tion derivatives of u are locally finite Borel measures, then the steps
(1)-(3) can be rigorously justified immediately through an application of
the generalized Green's formula for BV functions ([9], [31]). Almost any
introduction to fluid dynamics or continuum mechanics ({4], [17], and {29]
are recommended as well as the companion lectures of Professor Serrin)
gives a formal description of the process in (1)-(3).

Systems of conservation laws describe many physical phenomena. In
particular, important examples occur in gas dynamics, shallow water
theory, combustion theory, nonlinear elasticity, magneto-fluid dynamics,
and petroleum reservoir engineering ([7] contains an excellent discussion
of many physical examples; see [2]} for magnetofluid dynamics).

In these lectures, we will discuss in detail several properties of
the solutions of the four examples of conservation laws provided by (1)
the Euler equations of gas dynamics, (2) the isentropic Euler gas equa-
tions (useful in shallow water theory), (3) the inviscid (and viscous)
combustion equations, and (4) the nonlinear wave equation (both as a
model for 1-D gas dynamics in Lagrangian coordinates and also as the sys-
tem of conservation laws for 1-D hyperelasticity). In addition, we will
occasionally emphasize the use of highly instructive rational but largely
formal arguments from applied perturbation theory which indicate the
fashion in which simpler systems such as scalar conservation laws or the
Burgers' equation quantitatively model special solutions of these more
complex systems.

In these lectures, we will only study C1 and piecewise C1 solu-
tions of m x m systems of conservation laws with an emphasis on several
space dimensions. In particular for Cl solutions of (1.1), it follows
easily that

|
+
[N 4

af(—‘ Fj(u) = S(u,x,t) (1.2)

ot . 1 9%;

J

pointwise for (x,t) € RN x R*. The other simple consequence of (1.1)
vhich we will use applies to piecewise smooth solutions of (1.1). For
piecewise smooth solutions, the conditions in (1.1) are equivalent to re-
quiring the following two properties: 1) In regions of smoothness for

u, the equations in (1.2) are satisfied; 2) if u has a jump discontinu-
ity across a space-time hypersurface, S, with outward space-time normal
(nt,n), n= (nl,...,nN), the following nonlinear boundary conditions

are satisfied,
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N
(n[u] + jgl n [F;]lg = 0 (.3

with the brackets, { 1, denoting the jump in a quantity. The conditions
in (1.3) are the generalized Rankine-Hugoniot jump conditions. For classi-
cal gas dynamics, the surface S where (1.3) is satisfied are either
shock fronts or vortex sheets. Furthermore, the surfaces, S, should not
only satisfy (1.3) but should also include the subtle macroscopic effects
of diffusion through entropy conditions. (See Chapter 4 and the com-
panion lectures by Professor Bardos.) Since the surfaces S are not
known in advance, the conditions in (1.3) define a highly nonlinear free
boundary value problem for an m x m system of equations (see Chapter 4
of these lectures).

We will emphasize some of the special properties of the physical
equations in multi-D which distinguish these systems from the general
case. The remaining three chapters each have a separate introduction so
we will not describe their contents here. Several open problems are
discussed throughout the text - we believe that many of these problens
are tractable with a few new ideas. These lectures contain one glaring
omission - numerical methods are not discussed. Not only is this area
of great practical importance but designing and analyzing such methods
can be remarkably subtle. Furthermore, the theoretical insight into
multi-D conservation laws gained from high quality numerical calculations
can be substantial. The bibliography at the end of this chapter contains
a short and biased section devoted to the design and analysis of numeri-
cal methods for conservation laws -~ for readers who like to browse, the
volumes of the Journal of Computational Physics and Mathematics of Com-
putation over the last five years are also recommended. Finally, the
author hopes that these lectures stimulate others to work on the numerous

open problems in this area.

1.1. Some Physical Examples of Systems of Conservation Laws

1. Gas Dynamics

The compressible Euler equations in three space dimensions are the

5 x 5 system of conservation laws,

3
3 3
(a) 52+ Z 3 (V) = 0
= J
3 3
() 3¢ (pvy) + JZ (pv v+ 8P =0, i=1,23 (1.4)
3 3
(c) a_t'(DE) + Z (DVE-!»pv)

b} J



4 1. INTRODUCTION

where (a), (b), and (c). represent the respective conservation of mass,
momentum, and total energy with 6ij the Kronecker delta. Here p is
“the density, tv = (vl'VZ'VS) is the fluid velocity, p is the scalar
pressure, and E is the specific total energy. The quantity E 1is the
sum of contributions from the kinetic energy, % |v|2, and the internal
energy, e, i.e., E = %-lvl2 + e. For a single gas, e becomes a well-
defined function of p and p through the theory of thermodynamics,

e = e(p,p). Other interesting physical quantities, the temperature,
T(p,p) and the entropy, S(p,p), are defined through the following con-
sequence of the second law of thermodynamics

T dS = de - £ dp. (1.5)
P

In particular, we will often discuss ideal gases where the quantities,

e, T, S, have the explicit formulae,

S T
e(p,p) VRS
T(o,p) = B (1.6)

e - pe Y, ¥ > 1, constant.

Strictly speaking, to write the equations in (1.4) in the form of (1.2),
the conservative variables t(p,E,E) need to be introduced as u where
m= pv is the momentum, £ = pE is the total energy, and the flux func-
tions need to be rewritten in terms of (p,E,E) but we will not do this
here. In fact, in discussing solutions of (1.1) in regions of smoothness
for u, one often uses the velocity and a convenient choice of two addi-
tional variables among the five quantities S, T, p, p, e as indepen-
dent variables. For example, the Euler equations for an ideal gas can be
written in terms of the variables p, v, S in regions of smoothness in
the equivalent form

D, Yp divv =0

Dt
Dv
P et Vp =0 (1.7)
DS
ot~ 0
3
with 2.2, I v =2, the convective derivative along fluid
Dt at 541 j 3"5 > ng ul

particle trajectories. Here p(p,S) 1is defined by the last formula in
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(1.6) and since p must be positive it is evident that the state space

G R> is defined in this example by

6= {(*(p,v.5)| p > 0}.

2. Isentropic Gas Dynamics and the Shallow Water Equation

In the isentropic gas equations, one retains the equations (a) and
(b) described above in (1.4) and closes this system of four equations
for the four quantities p, v by postulating a functional relationship
between p and p, i.e., p = p(p) - the ideal gas approximation in
this case is p(p) = ApY, A>0, y>1. In terms of the nonconservative
variables, (p,v), the ideal gas isentropic equations have the form

%% +ypdivv=0
(1.8)

Dv
ot

+ Vp = 0.

In particular, the system in (1.8) follows from the one in (1.7) by setting

S = S0 and deducing the relationship

-So/Y
pept/Ye © (1.9)

directly from (1.6). With N =1 or 2, the case Y £ 2 arises in the
shallow water approximation (see [7]).

3. The Inviscid Combustion Equations

Here we will not write down the general equations (see Strehlow [30])
but instead concentrate on an instructive idealized special case. We
assume that there are only two species present, the unburnt gas and the
burnt gas, and that the unburnt gas is converted to burnt gas through a
one-step irreversible exothermic chemical reaction with an Arrhenius
kinetics mechanism. With 2 denoting the mass fraction of unburnt gas
so that 1-Z is the mass fraction of burnt gas, we have the continuum

chemistry equation,

e 17

@ 200

, - (ov;2) = Nz,

1775 'AO/T (1.10)
with W(Z,T) =Ke Z

adjoined to the equations of compressible fluid flow, (a), (b), and (c)
defined in (1.4). As regards the equations in (1.4), a crucial modifi-
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cation of the internal energy, e, is the only change in these equations.
The internal energy of the mixture, e(p,p,2), is defined within a con-

stant by

e(p,p,2) = Ze (p,p) + (1-2)e, (p,p)

where e,» €, are the internal energies of the unburnt and burnt gas.
For simplicity we assume that both the burnt and unburnt gases are ideal
with the same <vy-gas law so that
(T-Tp) (T-Ty)
PPl =TTt % %t T
where qq is the normalized energy of formation at the reference tempera-
ture To for the unburnt gas - qq > 0 for an exothermic reaction. Then,
e(p,p,2) = y-ix + q,2
(1.11)
=2
T(p,p) o

(We have ignored the inessential constant shift in e.) The formulae in
equation (1.11) together with the equations (a), (b), (c), and (d) from
(1.4) and (1.10) define the inviscid combustion equations. The source

term S is nonzero here.

4. The Nonlinear Wave Equation

The nonlinear wave equation is the second order equation,
LI (K(ux))x = 0,

. t R
If one introduces the vector u = (ul,uz) with u; = u, and uy = u,,

the first order 2 x 2 system of conservation laws

u -u

1 2

. =0 (1.12)
Uz e K(u))

is an equivalent system. The natural state space G defined by the
requirement of hyperbolicity for (1.12) is given by

6 = {(*eup,u,)| K'qup) > 0} (1.13)

4A. The Nonlinear Wave Equation in Fluid Flow

In fluid dynamics, (1.12) arises as the equations of one-dimensional
isentropic gas motion in Lagrangian coordinates - here «x is a mass
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: s 1
coordinate (see [7]), in this context, u; =1, with 1 = r

volume, and u, = v the fluid velocity. For an isentropic ideal gas

, the specific

(see (1.9)), K(ul) has the explicit form
K(u)) = -AuIY, A>0, vy>1 (1.14)
and in this case G = {t(“l’uz)l u > 0}.

4B. The Nonlinear Wave Equation in Elasticity Theory

In 1-D elasticity, the nonlinear wave equation arises with u(x,t) + x
the deformed location at time t of the material initially located at
X, uy = ux the strain, and Ktulj the stress-strain function (see p.
235 of [7]). In particular, for a hard spring or a "non-Hookian' material
([7)), in a neighborhood of zero, typically,

K(hl) is a smooth odd function

such as K(ul) = u1// 1+ ui or u, + aui. The facts that K(ul) is
convex in case 4A while K(ul) is typically an odd function in case 4B
imply that the nonlinear wave motion in these two cases is qualitatively
quite different - see various results in the remainder of Chapter 1 and

Chapter 3 below (and also [18]).

1.2. The Importance of Dissipative Mechanisms

We begin by writing the combustion equations in terms of t(p,v,T)
but retaining all the diffusion mechanisms including viscosity, heat con-
duction, and species diffusion (see [32]). The result is the system of
equations of combustion theory

(@) P2+ yp divv= (y-1)Av(KIT) + quply-DN(Z,T)

Dt
- v, av.\2 2 2
+ (y-v _2' (aT + —l -3 8;;0dv V)
i,j i
Dv. v, v,
i 3 i 2 : R
() P+ 5%— —‘v ) ax (iif + 5;; -3 Gij div v), i=1,2,3
(e) » -g% + (y-1)p div v = (y-1)div(kVT) + (y-1)q,0W(Z,T) (1.15)
v, 3v.\2 2 2
+ (y-1V 2 (ax 51-) - 5 8;50iv Y

() o fF = div(pdV2) - pH(Z,T)

& p=%.
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(Our somewhat nonstandard choice of the dependent variable (p,v,T) rather
than (p,v,e), etc. is motivated by the application to be discussed in
Section 2.5 where V is the viscosity coefficient, x is the coeffici-

ent of heat conduction, and d is the coefficient of species diffusion.)
We have written down all of these diffusion coefficients to illustrate

the complexity of the physical equations when all transport processes are
included. When the equations in (1.15) are nondimensionalized with macro-
scopic length and time scales the diffusion coefficients, V, x, and d

3 or 10-4. One of the objectives of the

are typically of the order 10
theory of conservation laws is to incorporate the effects of the small
scale diffusion processes on the large scale quantities without resolving
the small scale effects in detail - one imposes additional entropy condi-
tions on the weak solutions of (1.1) in order to achieve this. Such an
approach is very successful in ideal gas dynamics but can be rather subtle
in more complex physical systems like the combustion equations. Flame
fronts are significant waves which do not move at the characteristic
speeds associated with the inviscid combustion equations defined in
(1.10), (1.11) and (1.4). These waves are generally slow moving fronts
with velocities of 2 or 3 meters/sec and the wave speeds are governed by

a subtle balance between the reaction term W(Z,T), and the diffusion co-
efficients, x, d. In fact even for detonation fronts, the fast moving
supersonic wave fronts in combustion theory which are analogous to shock
fronts, the inviscid shock-layer approximation (known as the Chapman-
Jouget theory in this context ([7])) which works so well for ideal gas
dynamics can break down completely in describing the actual solutions of
the equations (see [11], [20]). In fact, for fluid dynamics with very
general equations of state, the standard conclusions of shock-layer analy-
sis which allow one to ignore the detailed effects of diffusion can be
completely wrong when heat conduction dominates viscosity ([26]). The
above remarks indicate the subtlety involved in ignoring dissipative
mechanisms in the theory of conservation laws. In fact, in more. complex
physical systems such as the equations in (1.15), a more detailed assess-
ment of their effect on the macroscopic length scales is always needed.
The simpler inviscid combustion equations described in Section 3 above
might be an excellent approximation in a given regime (usually a detonation
regime) in practice but one always needs to assess the effects of these
diffusion mechanisms in that regime through careful analysis of simpler
problems.
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1.3. The Common Structure of the Physical Systems of Conservation Laws
and Friedrichs' Theory of Symmetric Systems

We first consider the case where the source terms S(u,x,t), vanish.

In this case, any constant uo, belonging to the state space, G, is a trivial

solution of (1.2). By linearizing about this smooth solution Y by

considering solutions u(x,t) = uo + v, we obtain the linearized equa-

tions,
v v N
5l Al Fos 0 t>0, xeR
= J (1.16)

v(x,0) = vo(x)

where AJ. (u) = aFj/au, j=1,...,N are the corresponding m x m Jacobian
matrices. A minimum requirement for a general system of conservation

laws from (1.2) is that the linearized Cauchy problem from (1.16) defines

a well-posed problem. Many years ago, Friedrichs made the important ob-
servation that under reasonable conditions, almost all equations of classi-
cal physics of the form (1.2) admit the following structure: For all

u € G, there is a positive definite symmetric matrix Ro(u) smoothly vary-
ing with u so that

~ -1 ~ ~%
(a) cl 5 Ao(u) _<_ c In AQ = Ao)

with a constant ¢ uniform for u € G, and any G
— 1 L aan
with G1 c<G :
-~ ~ -~ ~*
(b) Ao(u)Aj(u) = Aj(“) with Aj[u) = Aj(u), j=1,...,N.

For example, the equations for an ideal gas in (1.7) are symmetrized by
the S5 x 5 matrix
o~ 0
Ro(p,S) = p(p,S) I, . (1.18)
0 1

0f course, symmetrizers are not unique - the reader can check that if one
writes the ideal fluid equations in nonconservative form using as vari-
ables (p,v,T) resulting in the system,

Do vy e
e * P divvs=20

Dv
P T pVT + TVp = 0

B+ oD Tdivy=o.



