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PREFACE

In THE first edition we attempted to provide, in a single volume, a comprehensive treatment
of both analytical and numerical methods for the derivation of two-dimensional static and
.quasi-static electric and magnetic fields. The main objectives were to try to present the
essence of each method of solution and to indicate and compare the scopes of the different
methods having particular regard to the influence of digital computers. In this second edition
the aim is largely the same, but the treatment has been revised to include developments
which have occurred over the last ten years both in methods of solution and in new appli-
cations.

As with the first edition, the book is intended primarily for engineers, physicists, and
mathematicians who are faced with problems which can only be solved by an analysis of
electromagnetic fields. It is also suitable for degree students towards the end of their courses.
An aim at all stages has been to emphasize the physical significance of the mathematics and,
to this end, examples of practical interest have been selected wherever possible.

The main text is divided into four parts so arranged that, provided the material contained
in the first of these is familiar, study can ccmmence in any of the other three parts. Part I
contains a brief introductory chapter and a chapter devoted to the fundamental theory of
electric and magnetic fields. The latter has been considerably modified since the first edition
so as to give, in as concise a form as possible, the background theory essential to an under-
standing of the methods of analysis used later in the book. A clear explanation is attempted
of the derivation of quantities of physical interest such as force, inductance, and capacitance
from the field solution. '

Part II deals with the image and variables separation methods of solution. In addition to
the topics commonly treated under these headings, the present treatment covers a wide range
of field sources; and, in the chapter on images, the basic solutions are developed rigorously
from considerations of surface charges and solutions are expressed in complex variable form.

Part II1, the longest of the four, is devoted to transformation methods, and the authors -
believe that it offers the most comprehensive treatment of the subject which is available.
Some of the more important topics not normally dealt with include the following: line and
doublet sources, which are rarely treated in connection with electromagnetic: fields; the
transformation of regions exterior to finite boundaries ; and the powerful numerical methods
which have been developed to enlarge the scope of conformal transformation.

Part IV deals with finite difference methods which can be used to solve any problem
relevant to this book. All classes of boundary shape and condition are discussed and Chap-
ter 2 has been enlarged to take account of recent computational developments. It should
provide a useful introduction in a particularly important and rapidly developing area. )

For their helpful comments we are most grateful to Dr. E. M. Freeman of Brighton Poly-
technic and Professor P. Hammond of the University of Southampton.

K.J.B. P.IL.






PART I

INTRODUCTION

CHAPTER 1

INTRODUCTION

Types of field discussed. All staticelectricand magneticfields in a uniform mediumaredescribed
by Poisson’s equatmn or its particular form, Laplace’s equation. Poisson’s equation
appliés within regions of distributed current or charge, and Laplace’s equation apphes in all
other regions of the field. In Chapter 2 the properties of fields described by these equations
are reviewed, and the whole of the remainder of the book is devoted to different’ methods
for the solution of the ficld equations. - ’

In addition to the above static fields, which they describe exactly, Laplace’s and Poisson’s
equations also describe, to a high degree of accuracy, several types of time-varying field.
The commonest of these occurs when the frequency and boundaries are such that the effect
of eddy currents is negligible. However, Laplaciam solutions can also be used when the eddy
currents are so strong that negligible flux penetrates a boundary surface. Electromagnetic
radiation phenomena are described by the wave equation, but for certain problems, such as
the determination of the characteristic impedance of transmission lines, Laplacian solutions
are applicable.

All physical fields are, of course, three-dimensional, but for most cases of practical interest
exact analytical solutions are not available, and numerical solutions often involve a pro-
hibitive amount of computation. However, approximate solutions of quite sufficient accu-
racy can be obtained by using a two-dimensional treatment, i.e. by neglecting the variation
of the field in one direction. As a result, analysis becomes possible in very many cases, and
in the others the labour of numerical solution is greatly reduced. Two examples of two-
dimensional treatment occur in the calculation of thé magnetic fields in rotating electrical
machines. Firstly, the distribution of the main field within the air gap can be found with
negligible error by analysing the field at a cross-section perpendicular to the axis (the varia-
tion along the length of the machine being neglected). Secondly, the field outside the machine
ends can be found, though rather less accurately than in the previous example, by analysing
the field in an axial plane (neglecting the peripheral variations). :
Types of solution. Most of this book is concerned with sclutions of Laplace’s equation,
though the more general form, Poisson’s equation, is discussed in Chapters 5 and 11. There
are two reasons for giving more attention to Laplace’s equation : firstly, the majority of fields -
of practical importance are of this simpler type, and, secondly, since Poissonian fields are
the more difficult to solve, advantage is frequently taken of the relatively small importance
of the Poissonian region to replace it by an equivalent filament, so effectively making the
whole field Laplacian. For example, in calculating the inductance of a transmission line,
the field is solved for a current concentrated in a central filament of the line.

All solutions fall into one of two classes, analyﬂcal or numerical. In the first class a solu-
tion is in the form of an algebraic equatlon in which values of the parameters defining the
field can be substituted. A solution in the second class takes the form of a set of numerical

3



4 ELECTRIC AND MAGNETIC FIELD PROBLEMS

values of the function describing the fieid for one particular set of values of the parameters.
All analytical methods have been in common use for at least sixty years, but it is only within
the last thigty years or so that numerical methods have come into prominence. The recent
development of numerical methods has been greatly stimulated by the advent of fast digital
computing machines which have made possible routine solutions, to a high degree of accu-
racy, of many types of problems which would otherwise be extremely or even prohibitively
laborious.-

Where either analytical or numerical methods can be employed for the solution of a par-
ticular field, the choice of the most suitable method can sometimes be difficult to make. Ana-
lytical methods have the advantage that a general solution can be derived, from which it is
possible to gain an overall picture of the effect of the vartous parameters. In contrast, with
numerical methods it is necessary to calculate separately for each set of values of the para-
meters; a consequent disadvantage is that an overall picture can often be achieved only at
the expense of a great amount of computation. However, for some problems for which ana-
lytical methods are possible, the determination of an analytical solution can be so involved
and the computation so lengthy that mynerical methods are simpler and quicker.
Analogous fields.-In many aspects of engineering and physics there are physical phenomena
which are directly analogous to ¢lectric and magnetic field phenomena. Amongst these are
the flow of heat in conducting media and the flow of an inviscid liquid. For example, the
temperature distribution between two boundaries having a constant temperature difference
begween them, or the distribution of the stream function of an ideal fluid passing between
these boundaries, is identical in form with the voltage distribution between the same
boundaries having a constant electric potential difference. Thus a solution to one problem

TaBLg 1.1,  ANALOGOUS QUANTITIES IN SCALAR POTENTIAL FIELDS

I 5 ot ) l .
Quantity | Electrostatic | Electric 1 Magneto Heat flow Fluid flow | Oravita-
| . Current | static ' ; tional
Potential Potential ¥ | Potential ¥ | Potential 2 Temper- Velocity Newtonian
ature potential potential
Potential Electric Electric | Magnetic Temper- Velocity Gravitation
gradient field field - field ature force
strength E strength E strength H gradient
Constant of | Permittivity | Conductivity | Permeability | Thermal Density Reciprocal
medium € o u conduc- of gravi-
tivity | tation
constant
Flux Electric Current Magnetic Heat flow Flow rate
density flux density | density J flux density density
D B
Source Charge Current Pole Heat Density Mass
strength density o, depsity J density p,, source of efffux density
density
Field Capacitance | Conductance | Permeance Thermal
conduct- C G 4 | conduct-
ance | ance
j




INTRODUCTION ) 5

of a partigular physical type is directly applicable to other problems of different types, and
methods developed in this book for electric and magnetic fields apply equally to the other
fields mentioned above. Table 1.1 shows the equivalence of quantities in the different types
of scalar potential field. In addition to the ones tabulated, consideration is given in the book
to magnetic fields within regions of distributed current, and it is of interest to note that this
type of field is analogous, for example, to that of fluid flow with yorticity.

AC 2






CHAPTER 2

BASIC FIELD THEORY

THis chapter provides a very brief review of the basic concepts of stationary electric and
magnetic fields in just sufficient detail to cover the background theory required for the
methods of analysis described in the book. Initially, the development is based on the point
sources of field, but thereafter attention is given primarily to the line sources, the charge,
the pole, and the current which are basic to the two-dimensional fields considered in this

book.

2.1. Electric fields

2.1.1. The electrostatic field vectors

The concept of electric charge is of fundamental importance in the study of electric fields.
- A charge of magnitude g coulombs is considered to emit a total electric flux of ¢ units;
hence, an electric flux g emanates from any closed surface containing a charge g.

The electric flux density at a point is the vector D, and its direction is that of the flux.
Considering a spherical surface of radius r, with its centre at the position of a point charge,
it is evident from considerations of symmetry that the direction of the flux is radially out-
ward and that the density of flux crossing the surface is equal to ¢/4=#2, i.e. the magnitude of
the flux density is given by

q
= A 2.1

The force exerted on unit charge placed at a point, a distance r from a charge g, is propor-
tional to ¢/r?%, and so to the valuve of the vector D at that point due to the charge ¢. Thus if
a vector E, known as the electric field strength, is defined to describe the force acting on the
unit charge, then E is proportional to D for a givén medium and may be expressed as

D= E()SE, (22)

where ¢4 is the primary zlectric constant and ¢ is the relative permittivity of the surrounding
medium. So combining eqns. (2.1) and (2.2) gives

= -~ q - 2
£ 43’8801‘:‘1‘2 ) h3)
In free space this becomes
.
E= Amegr® ’

which, because of the nature of the variation of E with r, is called the inverse square law.
2 7



- 8 ' ELECTRIC AND MAGNETIC FIELD PROBLEMS

Consider now a charge distributed over a volume. As the volume tends to zero, the limit,
at a point, of the outward flux per unit volume is called the divergence of the vector D, and
is a scalar. Thus the divergence of D at any point within the volume is equal to the charge
density ¢, ..

divD = p.. _ 2.4

The field of a line charge. When charge is uniformly distributed along an infinite straight
line, the direction of the flux leaving the charge is everywhere perpendicular to the line, and
the flux emitted per unit length of the line is equal to the linear charge density g. At a radius
r about the charge, the flux density D is given in magnitude by

_ 49 ‘
D= Yo 2.5
and so
_._P :
E = Smear (2.6)

Thus the field strength varies inversely as the distance from the line charge.

FiG. 2.1

This field is two-dimensional, and in all such fields a quantity of flux may be represented
by a number of flux lines. At any point the direction of such a line is that of the flux density,
and the concentration of the lines is a direct indication of the flux density there. A simple
example of the distribution of flux lines is provided by the field of two charged conducting
concentric cylinders (Fig. 2.1). From symmetry it is seen that the flux passes radially between
the two cylinders and, since the quantity of flux passing each surface is the same, the flux
densities on the surfaces of the cy!mders are inversely proportional to their circumferences
and therefore to their radii.

2.1.2. Electric potential

The scalar quantity,‘called the electric potential ¥, is a point function defined as the the
work done in moving unit charge from infinity to the point. Now the work done d¥ in
moving untt charge a small distance d/ is given by

dV = —E.dl, N @7

since E is the force on unit charge. The negative sign means that the potential decreases. with

//.~ sz
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