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Preface

To the Student

Computing is usually taught from a step-by-step or serial point of view. Algorithms are
organized as a sequence of computational steps, programs are written one command after
another, and machines are designed to execute a chain of machine instructions by performing a
string of microsteps, one after another. While sequential formulation of a problem can lead to a
solution, a tremendous performance advantage is available from doing many operations in paral-
lel. The two principal approaches to speeding up a computation are a faster clock rate for the
underlying hardware and doing more operations in parallel. Introducing parallel operations to
speed up an application is a promising approach, because as tasks become larger, more opera-
tions can potentially be done in parallel. To realize this potential, three things must work
together. Algorithms must involve many independent operations, programming languages must
allow the specification of parallel operations or identify them automatically, and the architecture
of the computer running the program must execute multiple operations simultaneously.

Parallel processing is the result of this combination of algorithm design, programming
language structure, and computer architecture all directed toward faster completion of an appli-
cation. The fundamentals of parallel proéessing emerge from an understanding of this combina-
tion of computing topics and their collaboration to achieve high performance. To gain this
understanding, a basic knowledge of computer design and architecture, of programming lan-
guages and how they produce machine code, and of the elements of algorithm structure is
required. Although some subsections focus exclusively on one of the three aspects of architec-
ture, language, or algorithm, there are no such major divisions in the book. Treatments of all
three are combined to expose the fundamental concepts that make up the discipline of parallel
processing. We expect the reader to have a basic knowledge of algorithms and programming. To
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xvi Preface

address the real goal of parallel processing—better performance—one must know how the pro-
gram is executed by a computer at the machine language level. This requires an understanding
of the specific organization of hardware elements constituting a machine architecture. Introduc-
tory experience in these areas constitutes the prerequisite material for reading this text.

To the Instructor

The goal of this textbook is to provide a comprehensive coverage of the principles of par-
allel processing. Integration of parallel architectures, algorithms, and languages is the key in
gaining both the breadth and the depth of knowledge and expertise needed in designing and
developing successful parallel applications. The book is organized and presented so that it con-
tinuously relates these subjects within the topic being studied. Discussions of algorithm designs
are followed by the performance implications of each design on parallel architectures.

The rapid changes in technology and the continuous arrival of new architectures, lan-
guages, and systems demand a fundamental understanding of the field of parallel processing.
The uniqueness of this book is that it treats fundamental concepts rather than a collection of the
latest trends. The flow of information is carefully designed so that each section is a natural next
step from the previous one. Detailed examples are used to clarify difficult concepts. The issues
to be studied are posed early enough to motivate the reader to continue and to give a clear picture
of what is to come next and why. The alternative approach of covering “recent” architectures,
languages, and systems as a vehicle to teach the fundamental concepts is difficult and quickly
dated. It is very hard to get to the heart of a subject without the readers feeling lost and confused
about what is really being conveyed. Peeling off some layers of additional information and fea-
tures is necessary before getting to the fundamentals in every case. For example, is it necessary
for a language to provide numerous constructs? Or are some of them considered essential and
some additionally provided for ease of use? Are they implemented with efficiency in mind for
certain architectures or are they provided for portability? Are the constructs implementation
dependent? Will their performance vary by much on different computer architectures? It is never
possible to completely understand the trade-offs and the underlying concepts by going over
example machines and languages alone. Once the fundamental concepts are understood, they
can be applied to any architecture, system, or language.

Parallel processing is a relatively young academic discipline. The authors believe that it
has developed to a point where fundamentals can be identified and discussed apart from indi-
vidual systems. We have focused on presenting the fundamentals by architectural features, sys-
tem properties, language constructs, algorithm design and implementation implications in a
way that is as independent as possible of specific architectures, systems, and languages. In
some cases, the original machine, language, or system introducing the concept being presented
is covered. However, in a majority of cases we have intentionally refrained from expanding
each topic to cover many specific machines or languages for the purpose of concentrating on
fundamentals.
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Although this is not intended as a parallel programming text, a real programming language
is presented for each type of major parallelism concept introduced throughout the text. We
selected Fortran as the base language whenever possible for several reasons. Much of the
research literature in parallel processing is Fortran-based, and there are numerous parallel For-
tran scientific programs and programmers. In addition, Fortran is a simple high-level language
close to the machine level. It is easier to observe and explain the effects of executing Fortran
statements on various machine architectures compared to high-level languages with many com-
plex, user-friendly features. The Fortran program designer has much control over programming
style, design, implementation, and execution. Fortran is a static language, so in comparison to
dynamic languages or languages providing dynamic features, the programmer must be cau-
tioned less regarding the use of high-level features and their parallel performance implications.
The simplicity of the language helps keep the focus on parallel concepts and constructs. That
multdimensional arrays are supported in Fortran is especially significant for vector processing.
Maintaining the same base language throughout the book keeps the presentation consistent, and
readers, not needing to switch between languages, will concentrate on parallel issues.

This textbook is designed and organized after many years of teaching and research experi-
ence in the field of parallel processing. It is intended for computer science or computer engineer-
ing seniors and graduate students. Students studying the book will be able to confidently design
and implement new parallel applications, evaluate parallel program and architecture perfor-
mance, and, most important be able to develop their skills by learning new parallel environments
on their own. The major task of an educator is to nurture his or her students so that they can con-
tinue to grow and develop in their field of interest independently. This textbook is designed with
this important goal in mind and will provide instructors with a comprehensive set of material to
educate their students to be productive and successful.

Tailoring the Text to a Syllabus

The first seven chapters constitute an excellent first-semester course in parallel process-
ing. They give an in-depth coverage of parallel algorithm design, vector, multiprocessor, and
dataflow architectures, parallel languages for each machine type, synchronization and commu-
nication mechanisms, interconnection networks, data dependence, and compiler optimization
techniques. The remaining four chapters are intended for advanced treatment of issues studied
in the first part of the book. The focus is on various synchronization and communication
implementations, influence of implementations on performance, interpretation of machine
architecture and program performance, effects of program behavior on performance, and paral-
lel I/O. This part of the book provides an excellent second semester for graduate students.
They will gain insight into how to analyze machine architectures, parallel programs and sys-
tems, and understand how these components interact and influence overall performance. Many
advanced research project ideas can be deduced from topics covered in Chapters 8 though 11.
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The following chart shows the major dependencies among the chapters and suggests how they
may be tailored to cover specific areas of emphasis.

Chapter Contents

Chapter 1: Parallel Machines and Computations

y

Chapter 2: Potential for Parallel Computations

Y

Chapter 3: Vector Algorithms and Architectures

Chapter 4: MIMD Computers or Multiprocessors

Chapter 5: Distributed Memory Multiprocessors

A

A

Chapter 6:
Interconnection
Networks

Y y

Chapter 7: Chapter 9: Chapter 11:
Data Parallel Parallel /O
Dependence Processor
and Parallelism Performance
Y

Chapter 8: Chapter 10:

Implementating Temporal

Synchronization Behavior of

and Data Sharing | | Parallel Programs

Chapter 1 briefly reviews the evolution of parallelism in computer architectures. It intro-

duces the basic ideas of vector processing, multiprocessing, and parallel operations in algo-
rithms. It establishes a framework for topics in the remaining chapters.

Chapter 2 introduces the key ideas of data dependence. The prefix computation is used to

illustrate algorithm characteristics that make different ways of doing the same computation more
or less parallel.

Chapter 3 examines the application of the same operation to multiple data items in paral-

lel. It motivates the discussion with some simple algorithms from linear algebra and presents
an architecture at the machine language level that incorporates vector operations. Fortran 90 is
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discussed as a language with high-level support for the unique features of machine level vector
processing. Pipelined vector processing is discussed.

Chapter 4 briefly surveys multiprocessor architectural organizations and establishes the
difference between shared and distributed memory multiprocessors. It proceeds to focus on
shared memory by describing the extensions to sequential programming that are needed to coor-
dinate multiple processes to perform a task. The OpenMP Fortran extension is used as an illus-
tration of high-level constructs used to support shared memory multiprocessing. The chapter
also establishes the basics of pipelined MIMD, or multithreaded, architectures.

Chapter 5 describes distributed memory multiprocessors using the message passing
viewpoint to direct attention toward the dominant role of data communication in such architec-
tures. Explicit send and receive programming is introduced, and the message passing interface
(MPT) is used as an illustration of high-level language support for such programs. The basics of
cache coherence and memory consistency are described in relation to shared memory and dis-
tributed memory multiprocessors.

Chapter 6 discusses interconnection networks in depth, including those for vector comput-
ers, and shared and distributed memory multiprocessors. Static and dynamic networks are com-
pared and contrasted along with various topologies and their properties. Use of the network to
combine messages, as in the NYU Ultracomputer, is discussed.

Chapter 7 is important in relating the ideas of data dependence that underlie the structure
of parallel algorithms to the structure of a program. It covers code optimization techniques and
topics of concern to a compiler writer having the task of generating code for a parallel computer.
This chapter also introduces the ideas of dataflow languages and architectures that allow the
elimination of nonessential dependences from programming languages and machines.

Chapter 8 expands the ideas of synchronization introduced in the shared memory discus-
sion of Chapter 4 and integrates them with the data transmission point of view emphasized in
Chapter 5. An in-depth understanding of key issues in synchronization is provided by a set of key
topics, ranging from synchronization in cooperative communication, managing shared tasks,
waiting mechanisms, to how to prove that a synchronization mechanism is implemented correctly.

Chapter 9 focuses specifically on the performance issues that have been continually
referred to in previous chapters. It treats various performance models and illustrates their use
through case studies of measurements on real systems. The impact of different scheduling and
implementations of parallel constructs is discussed.

Chapter 10 relates performance of a parallel program execution to its temporal behavior.
Experiments on real systems are used to illustrate performance characterization models. It
examines temporal characterization from several viewpoints ranging from behavior in single
cache systems, multiprocessor systems with distributed caches, to message passing systems.

Chapter 11 treats various aspects of parallelism in /O operations. Parallel access disk
arrays (RAID) are described as parallel I/O hardware. I/0 dependence operations are introduced.
Parallel input and output methods on files are discussed. Finally, parallelism in multiprocessors
collective I/O operations is covered using MPI-10.
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