PEARSON

T

HEHRAZEHAREZRARERIIEM (R) Prentice

1

Fundamentals of

Parallel Processing J+1T 5t B E

Harry F. Jordan
Gita Alaghband

Fundamentals of

FITA BB

Harry F. Jordan

University of Colorado-Boulder

Gita Alag

University of Colo

REXF M
b3

English reprint edition copyright © 2003 by PEARSON EDUCATION ASIA LIMITED and TSINGHUA

UNIVERSITY PRESS.
Original English language title from Proprietor’s edition of the Work.

Original English language title: Fundamentals of Parallel Processing, Harry F. Jordan, Gita Alaghband, Copyright ©
2003
All Rights Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing as Prentice Hall, Inc.
This edition is authorized for sale and distribution only in the People’s Republic of China (excluding the
Special Administrative Region of Hong Kong, Macao SAR and Taiwan).

AR (R Prentice Hall, Inc. 3L HEKZ HARA B R 1T .

For sale and distribution in the People’s Republic of China exclusively

(except Taiwan, Hong Kong SAR and Macao SAR).

R FEARKIMERA (FEFETESTE. BIMSNTHE
PERZHX) HE LT

e AR EEREEBEICS BT 01-2003-3083

FHEHHEMA Pearson Education (4 #5 HARE) AP IRE, ThHREERENE.

BB B (CIP) KB

FHATALBEZE A = Fundamentals of Parallel Processing / [313%FF (Jordan, H.), B4 25 Prid (Alaghband, G.>
& —HEA —Ib. EEKREHE, 2003
SRS S EAR R AE R 54D
ISBN 7-302-07382-1
L3 0. OFF QB 1M1 HITRBE—FRE—#M—EX V. TP274

P [E A B 450 CIP BT (2003) %8 091033 &

R & HERENRE M b AEEEERFEPIKE
http://www.tup.com.cn B 4R: 100084
T2 (010) 62770175 EPRS: (010) 6277 6969
RITHE: DB HERIT: TER
B0 B & s miee #97 &: RS8R FRRNMERAT

R 1T & HEBELSELSRITH

: 185230 EN3K: 3475 FX. 699 FF

: 20034F 10 A 1k 20034 10 B4 1 YRER
: ISBN 7-302-07382-1/TP - 5357

: 1~5000

: 56.00 7T

3 H & H
= I

U RIS S SN AL R

D BB, B

EE fF. ERX

BE E 1E. SEm Eok

| REZAR: (EHKEEAHF)
ORE =R T4 23R
K BEE EN SR
Bl mes EBEE

| E{EHLE. DEGR

APHRERSE: EEE

52

REMHSREBURMS, TEHBEESERERS HE T BEERMAL, XXt
B ERAB R A (R T T ER . SR BB RBEM N 1%
AR FER, BRIEMBOAEERE. AR MEACESEAMERAEL, %
FROHE LEEREEFRENERTANERRRNIT RS, FEBEFRNARSTT
BAA, BERNHAAL . ANERLERY, WREEFRAZHBT. SH. RS54
FEMBRRHEANS . SHERBRIMFTEHHERREMHTE, AR . FR
=TT AT BESR

MEHAERBERRE B, BEREISEMK BT MR AR,
FHEEWHAE - ENSEEZOMHRAR. R, MEmRs ZEdRENE,
H—-BREEWAKFE, A5 BERPTFAMERIT T RLHEM, BN R R FEA®
RS LAEREZ2EORETING, THRETFARRF MBI LEF KRG,
FFRFHIBIEER, BIEBEREES, FREERHM.

R ERRAF BT ENAA N AEBRRKN KRG, BE SRS REFERE
DB RRRE . RKFAL LI RESHOEFE R ERBR KRBT, &K
FHIERRREERE T RERKFRRS . SKENRBIHE A #FESR M T &k
R H RRT & MOS0 TAEIRE, (62248 IR ST BTSN . BORFIER
B, FACERRETHCY K AL MRREERME T R YRER.

ARBRFELHHFERE, HEMBOLH T HRREERTE. B THMER
EHEHRKE, LIUMREATEREPR. BN ERIRER AT ROF
B, EXREMERBNFIIEHANEESEHM R ENES, 80 bR
MBI R RR SR RES, URKFRIRTHEHE R 8. RN RGEYTIHEESNE
HARREM, BRETEEER T RS R EH RS RIRTE S RKE, SR
RE K RS

FETENFEHETWRASEFERFHRAARAIRET, #TTHEHR
FHEAREHMHEHAERFNRRANR. EHREM EHSREEHT2EESRERT
B ERMERMNBMEMLR T ARFIEM . EENU B CBEREE NEENRIE
BN, WERANGSREHENREZEERERTIARES TR L, HEILE
AR FNEA N BB EARE SRR ERT L RA N BT EME AT SRR
25 M. ZRFEMURSHENERERE, 2RKFE, RBRBZHERE, B8

EHIRBER B, FIRARFIBMPIRER (P30, 230 A, =R (KRR, 5
R BRI A, XERFIEM KRR R T —&H.

HEARFIB AR, %X IRSRE IO A B B AR,
MEEXRZR T EHRZEERN AR T URE SRR RFHEAENANA T
AR RS A

Y b

20039 H

FRKEEIMERPI R #F AR FHE . FEHLERR L.

Preface

To the Student

Computing is usually taught from a step-by-step or serial point of view. Algorithms are
organized as a sequence of computational steps, programs are written one command after
another, and machines are designed to execute a chain of machine instructions by performing a
string of microsteps, one after another. While sequential formulation of a problem can lead to a
solution, a tremendous performance advantage is available from doing many operations in paral-
lel. The two principal approaches to speeding up a computation are a faster clock rate for the
underlying hardware and doing more operations in parallel. Introducing parallel operations to
speed up an application is a promising approach, because as tasks become larger, more opera-
tions can potentially be done in parallel. To realize this potential, three things must work
together. Algorithms must involve many independent operations, programming languages must
allow the specification of parallel operations or identify them automatically, and the architecture
of the computer running the program must execute multiple operations simultaneously.

Parallel processing is the result of this combination of algorithm design, programming
language structure, and computer architecture all directed toward faster completion of an appli-
cation. The fundamentals of parallel proéessing emerge from an understanding of this combina-
tion of computing topics and their collaboration to achieve high performance. To gain this
understanding, a basic knowledge of computer design and architecture, of programming lan-
guages and how they produce machine code, and of the elements of algorithm structure is
required. Although some subsections focus exclusively on one of the three aspects of architec-
ture, language, or algorithm, there are no such major divisions in the book. Treatments of all
three are combined to expose the fundamental concepts that make up the discipline of parallel
processing. We expect the reader to have a basic knowledge of algorithms and programming. To

XV

xvi Preface

address the real goal of parallel processing—better performance—one must know how the pro-
gram is executed by a computer at the machine language level. This requires an understanding
of the specific organization of hardware elements constituting a machine architecture. Introduc-
tory experience in these areas constitutes the prerequisite material for reading this text.

To the Instructor

The goal of this textbook is to provide a comprehensive coverage of the principles of par-
allel processing. Integration of parallel architectures, algorithms, and languages is the key in
gaining both the breadth and the depth of knowledge and expertise needed in designing and
developing successful parallel applications. The book is organized and presented so that it con-
tinuously relates these subjects within the topic being studied. Discussions of algorithm designs
are followed by the performance implications of each design on parallel architectures.

The rapid changes in technology and the continuous arrival of new architectures, lan-
guages, and systems demand a fundamental understanding of the field of parallel processing.
The uniqueness of this book is that it treats fundamental concepts rather than a collection of the
latest trends. The flow of information is carefully designed so that each section is a natural next
step from the previous one. Detailed examples are used to clarify difficult concepts. The issues
to be studied are posed early enough to motivate the reader to continue and to give a clear picture
of what is to come next and why. The alternative approach of covering “recent” architectures,
languages, and systems as a vehicle to teach the fundamental concepts is difficult and quickly
dated. It is very hard to get to the heart of a subject without the readers feeling lost and confused
about what is really being conveyed. Peeling off some layers of additional information and fea-
tures is necessary before getting to the fundamentals in every case. For example, is it necessary
for a language to provide numerous constructs? Or are some of them considered essential and
some additionally provided for ease of use? Are they implemented with efficiency in mind for
certain architectures or are they provided for portability? Are the constructs implementation
dependent? Will their performance vary by much on different computer architectures? It is never
possible to completely understand the trade-offs and the underlying concepts by going over
example machines and languages alone. Once the fundamental concepts are understood, they
can be applied to any architecture, system, or language.

Parallel processing is a relatively young academic discipline. The authors believe that it
has developed to a point where fundamentals can be identified and discussed apart from indi-
vidual systems. We have focused on presenting the fundamentals by architectural features, sys-
tem properties, language constructs, algorithm design and implementation implications in a
way that is as independent as possible of specific architectures, systems, and languages. In
some cases, the original machine, language, or system introducing the concept being presented
is covered. However, in a majority of cases we have intentionally refrained from expanding
each topic to cover many specific machines or languages for the purpose of concentrating on
fundamentals.

Preface xvii

Although this is not intended as a parallel programming text, a real programming language
is presented for each type of major parallelism concept introduced throughout the text. We
selected Fortran as the base language whenever possible for several reasons. Much of the
research literature in parallel processing is Fortran-based, and there are numerous parallel For-
tran scientific programs and programmers. In addition, Fortran is a simple high-level language
close to the machine level. It is easier to observe and explain the effects of executing Fortran
statements on various machine architectures compared to high-level languages with many com-
plex, user-friendly features. The Fortran program designer has much control over programming
style, design, implementation, and execution. Fortran is a static language, so in comparison to
dynamic languages or languages providing dynamic features, the programmer must be cau-
tioned less regarding the use of high-level features and their parallel performance implications.
The simplicity of the language helps keep the focus on parallel concepts and constructs. That
multdimensional arrays are supported in Fortran is especially significant for vector processing.
Maintaining the same base language throughout the book keeps the presentation consistent, and
readers, not needing to switch between languages, will concentrate on parallel issues.

This textbook is designed and organized after many years of teaching and research experi-
ence in the field of parallel processing. It is intended for computer science or computer engineer-
ing seniors and graduate students. Students studying the book will be able to confidently design
and implement new parallel applications, evaluate parallel program and architecture perfor-
mance, and, most important be able to develop their skills by learning new parallel environments
on their own. The major task of an educator is to nurture his or her students so that they can con-
tinue to grow and develop in their field of interest independently. This textbook is designed with
this important goal in mind and will provide instructors with a comprehensive set of material to
educate their students to be productive and successful.

Tailoring the Text to a Syllabus

The first seven chapters constitute an excellent first-semester course in parallel process-
ing. They give an in-depth coverage of parallel algorithm design, vector, multiprocessor, and
dataflow architectures, parallel languages for each machine type, synchronization and commu-
nication mechanisms, interconnection networks, data dependence, and compiler optimization
techniques. The remaining four chapters are intended for advanced treatment of issues studied
in the first part of the book. The focus is on various synchronization and communication
implementations, influence of implementations on performance, interpretation of machine
architecture and program performance, effects of program behavior on performance, and paral-
lel I/O. This part of the book provides an excellent second semester for graduate students.
They will gain insight into how to analyze machine architectures, parallel programs and sys-
tems, and understand how these components interact and influence overall performance. Many
advanced research project ideas can be deduced from topics covered in Chapters 8 though 11.

xviil

Preface

The following chart shows the major dependencies among the chapters and suggests how they
may be tailored to cover specific areas of emphasis.

Chapter Contents

Chapter 1: Parallel Machines and Computations

y

Chapter 2: Potential for Parallel Computations

Y

Chapter 3: Vector Algorithms and Architectures

Chapter 4: MIMD Computers or Multiprocessors

Chapter 5: Distributed Memory Multiprocessors

A

A

Chapter 6:
Interconnection
Networks

Y y

Chapter 7: Chapter 9: Chapter 11:
Data Parallel Parallel /O
Dependence Processor
and Parallelism Performance
Y

Chapter 8: Chapter 10:

Implementating Temporal

Synchronization Behavior of

and Data Sharing | | Parallel Programs

Chapter 1 briefly reviews the evolution of parallelism in computer architectures. It intro-

duces the basic ideas of vector processing, multiprocessing, and parallel operations in algo-
rithms. It establishes a framework for topics in the remaining chapters.

Chapter 2 introduces the key ideas of data dependence. The prefix computation is used to

illustrate algorithm characteristics that make different ways of doing the same computation more
or less parallel.

Chapter 3 examines the application of the same operation to multiple data items in paral-

lel. It motivates the discussion with some simple algorithms from linear algebra and presents
an architecture at the machine language level that incorporates vector operations. Fortran 90 is

Preface Xix

discussed as a language with high-level support for the unique features of machine level vector
processing. Pipelined vector processing is discussed.

Chapter 4 briefly surveys multiprocessor architectural organizations and establishes the
difference between shared and distributed memory multiprocessors. It proceeds to focus on
shared memory by describing the extensions to sequential programming that are needed to coor-
dinate multiple processes to perform a task. The OpenMP Fortran extension is used as an illus-
tration of high-level constructs used to support shared memory multiprocessing. The chapter
also establishes the basics of pipelined MIMD, or multithreaded, architectures.

Chapter 5 describes distributed memory multiprocessors using the message passing
viewpoint to direct attention toward the dominant role of data communication in such architec-
tures. Explicit send and receive programming is introduced, and the message passing interface
(MPT) is used as an illustration of high-level language support for such programs. The basics of
cache coherence and memory consistency are described in relation to shared memory and dis-
tributed memory multiprocessors.

Chapter 6 discusses interconnection networks in depth, including those for vector comput-
ers, and shared and distributed memory multiprocessors. Static and dynamic networks are com-
pared and contrasted along with various topologies and their properties. Use of the network to
combine messages, as in the NYU Ultracomputer, is discussed.

Chapter 7 is important in relating the ideas of data dependence that underlie the structure
of parallel algorithms to the structure of a program. It covers code optimization techniques and
topics of concern to a compiler writer having the task of generating code for a parallel computer.
This chapter also introduces the ideas of dataflow languages and architectures that allow the
elimination of nonessential dependences from programming languages and machines.

Chapter 8 expands the ideas of synchronization introduced in the shared memory discus-
sion of Chapter 4 and integrates them with the data transmission point of view emphasized in
Chapter 5. An in-depth understanding of key issues in synchronization is provided by a set of key
topics, ranging from synchronization in cooperative communication, managing shared tasks,
waiting mechanisms, to how to prove that a synchronization mechanism is implemented correctly.

Chapter 9 focuses specifically on the performance issues that have been continually
referred to in previous chapters. It treats various performance models and illustrates their use
through case studies of measurements on real systems. The impact of different scheduling and
implementations of parallel constructs is discussed.

Chapter 10 relates performance of a parallel program execution to its temporal behavior.
Experiments on real systems are used to illustrate performance characterization models. It
examines temporal characterization from several viewpoints ranging from behavior in single
cache systems, multiprocessor systems with distributed caches, to message passing systems.

Chapter 11 treats various aspects of parallelism in /O operations. Parallel access disk
arrays (RAID) are described as parallel I/O hardware. I/0 dependence operations are introduced.
Parallel input and output methods on files are discussed. Finally, parallelism in multiprocessors
collective I/O operations is covered using MPI-10.

XX Preface

Acknowledgments

Grateful acknowledgment is due to the Institute for Computer Applications in Science and
Engineering, ICASE, which brought together a very stimulating group of computer scientists
during the late 1970s and the 1980s. Considerable intellectual inspiration was derived from
working with them. An important source of thoughts about the fundamentals of parallel process-
ing came from the Conferences on High Speed Computing organized by Bill Buzbee and George
Michael in 1980 and shepherded by them for 10 years. The effective mix of academics and
application scientists they gathered at these meetings did much to establish the fundamentals of
the field. Burton Smith has been a constant source of insight and perceptiveness. No technical
conversation with him is ever very far from the fundamentals. Iain Duff at CERFACS, Centre
European de Recherche et de Formation Avancee en Caicul Scientifique, provided a stimulating
environment for collaboration with European scientists. We are grateful to Alan Apt, editor, and
Prentice Hall for their invaluable support in completing this book.

The authors express their sincere appreciation to Chris Nevison, Wirg Wallentine, Pearl
Wang, Tanya Zlateeva, Nan Schaller, David Kincaid, Norm Troullier, Steve Seidel, Hank
Dietz, Richard Hughey, and Kathy Liszka for their diligent review of the book and constructive
comments.

A very special thanks and deepest gratitude from Gita Alaghband to Harry Jordan to
whom she is indebted for his years of generous guidance, mentorship, friendship, and support.

Finally, we express our appreciation to our families, Sue Jordan, Hamid, Sati, and Sara
Fardi, for their loving support, patience, and encouragement throughout the years.

Contents

Preface

Chapter 1: Parallel Machines and Computations

1.1 The Evolution of Parallel Architectures
1.1.1 Parallelism in Sequential Computers
1.1.2 Vector or SIMD Computers
1.1.3 Multiprocessors or MIMD Computers
1.2 Interconnection Networks
1.3 Application of Architectural Parallelism
1.4 Getting Started in SIMD and MIMD Programming
1.5 Parallelism in Algorithms
1.6 Conclusion
1.7 Bibliographic Notes

Chapter 2: Potential for Parallel Computations

2.1 Parameters Characterizing Algorithm Parallelism
2.2 Prefix Problem
2.3 Parallel Prefix Algorithms
2.3.1 Upper/Lower Parallel Prefix Algorithm
2.3.2 Odd/Even Parallel Prefix Algorithm
2.3.3 Ladner and Fischer’s Parallel Prefix

2.4 Characterizing Algorithm Behavior for Large Problem Size

2.5 Programming Parallel Prefix

vii

viii

2.6 Speedup and Efficiency of Parallel Algorithms

2.7 The Performance Perspective
2.7.1 Factors That Influence Performance
2.7.2 A Simple Performance Model—Amdahl’s Law
2.7.3 Average Execution Rate

2.8 Conclusion

2.9 Bibliographic Notes

Chapter 3: Vector Algorithms and Architectures

3.1 Vector and Matrix Algorithms
3.2 A Vector Architecture—Single Instruction Multiple Data
3.3 An SIMD Instruction Set
3.3.1 Registers and Memories of an SIMD Computer
3.3.2 Vector, Control Unit, and Cooperative Instructions
3.3.3 Data-Dependent Conditional Operations
3.3.4 Vector Length and Strip Mining
3.3.5 Routing Data Among the PEs
3.4 The Prime Memory System
3.5 Use of the PE Index to Solve Storage Layout Problems
3.6 SIMD Language Constructs—Fortran 90
3.6.1 Arrays and Array Sections
3.6.2 Array Assignment and Array Expressions
3.6.3 Fortran 90 Array Intrinsic Functions
3.6.4 Examples of SIMD Operations in Fortran 90
3.7 Pipelined SIMD Vector Computers
3.7.1 Pipelined SIMD Processor Structure
Processor/Memory Interaction
Number and Types of Pipelines
Implementation of Arithmetic

3.7.2 The Memory Interface of a Pipelined SIMD Computer

3.7.3 Performance of Pipelined SIMD Computers
3.8 Vector Architecture Summary
3.9 Bibliographic Notes

Chapter 4: MIMD Computers or Multiprocessors

4.1 Shared Memory and Message-Passing Architectures
4.1.1 Mixed-Type Multiprocessor Architectures

4.1.2 Characteristics of Shared Memory and Message Passing

Contents

36
41
41
43
45
46
46

s1

52
58
63
64
66
69
72
74
76
79
81
81
83
84
86
89
90
91
92
93
94
96
99
100

109

110
111
112

Contents ix
4.1.3 Switching Topologies for Message Passing Architectures 114
4.1.4 Direct and Indirect Networks 116
4.1.5 Classification of Real Systems 117

4.2 Overview of Shared Memory Multiprocessor Programming 118
4.2.1 Data Sharing and Process Management 119
4.2.2 Synchronization 121
4.2.3 Atomicity and Synchronization 121
4.2.4 Work Distribution 123
4.2.5 Many Processes Executing One Program 124

4.3 Shared Memory Programming Alternatives and Scope 126
4.3.1 Process Management—Starting, Stopping, and Hierarchy 127
4.3.2 Data Access by Parallel Processes 128
4.3.3 Work Distribution 130
4.3.4 Multiprocessor Synchronization 135

Atomicity 135
Hardware and Software Synchronization Mechanisms 138
Fairness and Mutual Exclusion 140
4.4 A Shared Memory Multiprocessor Programming Language 141
4.4.1 The OpenMP Language Extension 141
Execution Model 141
Process Control 142
Parallel Scope of Variables 142
Work Distribution 143
Synchronization and Memory Consistency 143
4.4.2 The OpenMP Fortran Applications Program Interface (API) 144
Constructs of the OpenMP Fortran API 146
4.4.3 OpenMP Fortran Examples and Discussion 151

4.5 Pipelined MIMD—Multithreading 158

4.6 Summary and Conclusions - 161

4.7 Bibliographic Notes 163

Chapter 5: Distributed Memory Multiprocessors 171

5.1 Distributing Data and Operations Among Processor/Memory Pairs 172
5.2 Programming with Message Passing 174
5.2.1 The Communicating Sequential Processes (CSP) Language 176
5.2.2 A Distributed Memory Programming Example: Matrix Multiply 180
5.3 Characterization of Communication 183
5.3.1 Point-to-Point Communications 183

x Contents

5.3.2 Variable Classes in a Distributed Memory Program 186
5.3.3 High-Level Communication Operations 188
5.3.4 Distributed Gauss Elimination with High-Level Communications 191
5.3.5 Process Topology Versus Processor Topology 194
5.4 The Message Passing Interface, MPI 198
5.4.1 Basic Concepts in MPI 199
Communicator Structure 199

The Envelope 200

The Data 201
Point-to-Point Communication Concepts 201

Collective Communications Concepts 202

5.4.2 An Example MPI Program—Matrix Multiplication 203
5.5 Hardware Managed Communication—Distributed Cache 210
5.5.1 Cache Coherence 210
5.5.2 Shared Memory Consistency 212
5.6 Conclusion—Shared Versus Distributed Memory Multiprocessors 215
5.7 Bibliographic Notes 218
Chapter 6: Interconnection Networks 223

6.1 Network Characteristics 224
6.2 Permutations 228
6.3 Static Networks 232
6.3.1 Mesh ' 232
6.3.2 Ring 235
6.3.3 Tree 236
6.3.4 Cube Networks 238
6.3.5 Performance 246
6.4 Dynamic Networks 246
6.4.1 Bus 247
6.4.2 Crossbar 247
6.4.3 Multistage Interconnection Networks (MINs) 248
Benes Network 248

Butterfly Network 250

Omega Network 252

6.4.4 Combining Networks—Mutual Exclusion Free Synchronization 255
6.4.5 Performance 260
6.5 Conclusion 264

6.6 Bibliographic Notes 265

Contents Xi

Chapter 7: Data Dependence and Parallelism 269

7.1 Discovering Parallel Operations in (Sequential) Code 270
7.2 Variables with Complex Names 273
7.2.1 Nested Loops 275
7.2.2 Variations on the Array Reference Disambiguation Problem 277
7.3 Sample Compiler Techniques 282
7.3.1 Loop Transformations 282
7.3.2 Loop Restructuring 285
7.3.3 Loop Replacement Transformations 287
7.3.4 Anti- and Output Dependence Removal Transformations 290
7.4 Data Flow Principles 292
7.4.1 Data Flow Concepts 293
7.4.2 Graphical Representation of Data Flow Computations 295
7.4.3 Data Flow Conditionals , 297
7.4.4 Data Flow Iteration 299
7.4.5 Data Flow Function Application and Recursion 301
7.4.6 Structured Values in Data Flow—Arrays 304
7.5 Data Flow Architectures 310
7.5.1 The MIT Static Data Flow Architecture 311
7.5.2 Dynamic Data Flow Computers 314
Manchester Data Flow Computer 315

The MIT Tagged-Token Data Flow Machine 315

7.5.3 Issues to Be Addressed by Data Flow Machines 318
7.6 Systolic Arrays 319
7.7 Conclusion 326
7.8 Bibliographic Notes 326
Chapter 8: Implementing Synchronization and Data Sharing 331

8.1 The Character of Information Conveyed by Synchronization 332
8.2 Synchronizing Different Kinds of Cooperative Computations 333
8.2.1 One Producer with One or More Consumers ~ *. 334
8.2.2 Global Reduction 334
8.2.3 Global Prefix 336
8.2.4 Cooperative Update of a Partitioned Structure 338
8.2.5 Managing a Shared Task Set 338
8.2.6 Cooperative List Manipulation . 339

8.2.7 Parallel Access Queue Using FFtch&add 341

