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Editors’ Pi;eface

Ever since the early days of development of the theory of electricity and
magnetism, accurate solution of initial and boundary value problems in
electrical engineering has been a major objective. Until the sixties, efforts were
mainly directed towards obtaining closed form analytical and analog solutions
based on simplified modelling of the boundary value problems and the
associated differential equations.

With the advent of digitdl computers, numerical solutions such as finite
difference schemes, finite elements, and integral equations have gained cur-
rency. However, the development and application of these techniques have-
been sporadic and generally problem oriented. Although nearly fifteen years
have passed since the first efforts, many queries have remained unanswered
and many more have been identified.

An International Conference on Numerical Methods in Electric and
Magnetic Field Problems was held in Sta. Margherita, Italy (June 1-4, 1976)
under the joint auspices of the International Center for Computer aided design
of the University of Genoa and the International Journal for Numerical
Methods in Engineering. The invited papers given at that conference, together
with three additional chapters, form the basis of this book.

Within the limits of steady state finite element and integral equation
solutions and linear time varying solutions of electric and magnetic field
problems, the reader is here presented with a broad picture of current thought
and research in this area.

The chapters are arranged into three principal categories, namely in-
troductory and concept development; applications and advanced techniques;
and specific methods. These are described in some detail in the following.

The introductory chapter reviews a number of practical situations arisiné in
electrical engineering which can be formulated as, initial and boundary value
problems. Different methods of solving the associated partial differential
-equations by analytical, analog, and numerical methods are surveyed. These
range from the classical separation of variables technique and its variants as
applied to transformers and inductors by Roth and Rogowski, conformal
mapping techniques, conducting paper plots, and finally computer based

ixn



X Editor’s Preface

numerical methods such as finite difference schemes and finite elements. A brief
discussion of the relative merits of the respective methods is presented.

In Chapter 1, the concept of the finite element method and its relative merits
vis-a-vis other established methods such as finite differences and boundary
integral methods are discussed. Different finite element approximations arising
from variational principles, weighted integral expressions, Lagrangian multip-
liers and penalty functions, virtual work principles, and others are surveyed.
General principles underlying the finite element approximation for two and
three dimensional electric and magnetic field analysis are described. An
application of the method for analysing transformer magnetic fields using a
scalar potential approximation is presented.

The electromagnetic field is basically a tensor quantity, which may be
described in a variety of ways. In Chapter 2, criteria for choosing the field
representations in finite element analysis are discussed. First, any field repre-
sentable by a linear combination of the finite element basis functions should be
physically realizable. Secondly, the describing equations should lend them-
selves to a variational or projective solution which will include natural
boundary conditions occurring at source-free surfaces or material interfaces.
Unfortunately, no single fully satisfactory description of the electromagnetic
field is known. Skilful choice of field representations, different for every- new
class of problems, is thus essential, so as to achieve simplifications and

~ computational savings. Some of the more usual representation of fields are

reviewed.

The finite element method involves the subdivision of the field region into
subdomains or finite elements and approximation of the field in each element
in terms of a limited number of parameters. Polynomial expansions are the
customary choice. In Chaper 3, the different methods of selecting shape
functions for elements are reviewed and the criteria for their choice are stated.
The properties of polynomial functions are discussed as relevant to finite
element approximations. The concept of isoparametric mapping which enables
the construction of elements with curved or distorted boundaries is described.

Chapter 4 describes the various aspects of software engineering required in
finite element analysis. In a typical program package, the mathematical
software occupies only a small portion, while most of the code is devoted to
problem definition and data handling; control of programme flow sequence
and error checking; and post-processing the solutions into forms useful for
engineering purposes. Software engineering seeks to ensure that programme
packages serve their intended mathematical purpose while communicating
with the user in a fairly problem-oriented manner. It strives to maintain
reasonable programme portability and flexibility consistent with economical
use of the computing hardware systems for which the programmes .are
intended. This chapter reviews the current trends in both hardware and
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software design and suggests that future software packages should be designed
with a high degree of modularity and standardization of file structure.

In Chapter 5, the development of the finite element method for solving two
and three dimensional electromagnetic fields in electric machines and devices
is presented. Various applications of the technique for linear and nonlinear
problems are discussed. Some of the areas surveyed are magnetic fields in
electrical machinery cross-sections and the end-region; transformers; diffusion
problems and eddy-current analysis in conducting media and electrostatic
applications.

Eddy currents, which are often viewed as only a harmful pheyomenon, have
their uses in industrial applications such as in induction heating, magnetic
propulsion and suspension, and others. In Chapter 6, different analytical
methods. for accurately predicting eddy currents in various practical situations
are reviewed. These include séries solutions for finite regions (eigenvalue
problems) and infinitely extenaing structures (Fourier analysis). Analysis of
three-dimensional problems by orthogonal function methods is also discussed.
For nonlinear problems, the Galerkin projection method is recommended. H is
concluded that for the general eddy current problem, no single all-
comprehensive technique exists other than a careful analysis of each individual
problem.

Chapter 7 summarizes the application of the high-order palynomial finite
element method to electromagnetic field calculations. It provides a basic
review of the development of the method indicating the motivation for its
construction and outlines its algebraic development. Problems encountered in
the computational implementation of the method are described and a bibliog-
raphy of the published applications of the high-order polynomial finite element
method in electromagnetics is provided.

Chapter 8 shows how the Fast Fourier Transform technique can be used
with advantage to solve transient electromagnetic diffusion fields. Attention is
focussed on the considerations underlying the application of the method to
solve practical engineering problems. The method is effective because the space
and time solutions to the field problem can be separately handled. This
technique requires evaluation of a single frequency-response function, which is
then used- repeatedly with the FFT for each time function, yielding utmost
computational economy.

There are many problems encountered in practice which do not clearly lend
themselves to formulation in either integral or differential equations. Chapter 9
indicates one possible avenue of approach in such cases: part of the problem is
dealt with in integral, part in differential form. Requiring the partial solutions
to match, imposes mutual constraints on the two systems of equations, which
are usually best solved by variational techniques.

In Chapter 10, various integral equation methods are described. For mag-



Xil ‘ Editor’s Preface

netostatic problems, three formulations are considered in detail: (a) the direct
solution method for the magnetic field distribution in permeable materials, (b)
a method based on a scalar potential, and (c) the use of an integral equation
derived from Green’s theorem, i.e. the so-called Boundary Integral Method
(BIM). In case (a), results are presented for both two- and three-dimensional
nonlinear problems and comparisons are made with measurements. Methods
(b) and (c) lead to a more economical use of the computer than (a); for these,
preliminary results for simple cases are included. Techniques for solving the
eddy current problem are discussed, and computed results based on a vector
potential formulation are presented.
The finite element art has had a marked impact on electromagnetic field
analysis in the past decade, and will no doubt continue to do so. While most of
_the early work dealt with scalar, two-dimensional, static fields, the chapters
presented here clearly point the way to broader problems. No doubt many
new methods and many new problems will appear in the next decade. The
trend to increased use of finite element methods will surely continue, fuelled by
a rapidly broadening range of available computing resources, and motivated
by increased acquaintance with their power—avec le manger bient appetit.
The editors wish to express their appreciation for the opportunity the
authors have granted them to engage in this most rewarding in-breadth study
of the finite element field. They wish also to thank the editorial staff of John
Wiley & Sons Limited for their extensive counsel and assistance.

Schenectady and Montreal M. V. K. CHARr1
25 March 1979 P. P. SILVESTER
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Introduction

A. L. Frisiani, G. Molinari, and A. Viviani

Boundary-value problems of mathematical physics occtir in practically every
engineering application. Different aspects are present, for instance, in struc-
tural analysis, heat transfer, fluid flow, electromagnetic ficlds, and they are
indeed of great interest in all practical design problems.

In the design process, even in its roughest phases, the designer tries to define,
by successive hypotheses and approximations, suitable boundary-value pro-
blems and to find acceptably ‘accurate solutions to them.

In the past, and still today in design probiems involving . only minor
economic and technoiogical difficulties, it was generally assumed that no
interaction took place among the various fields, for instance between the
electromagnetic field and the thermal one. Single-field problems were soived
by means of approximate procedures, generally requiring considerable simplifi-
cations of geometries and materials invoived. This procedure, which largely
makes use of solutions previously determined, such as unifcrm field solutions,
originated the lumped parameter approach, so widely empioyed especially in
electrical engineering.

The development of advanced technologies and the increase in dimensions
and costs of many engineering systems have made nccessary a parallel
development of more general and accurate computation techniques. It has
become increasingly important to obtain a deeper knowledge of the spatial
distribution of vector and tensor fields, either for improved accuracy in
evaluating integral parameters, or to determine and localize maximum values
which generally denote critical stress conditions in materials.

In the last decades, an impressive growth of the rating of electrical systems,
and consequently of their dimensions and costs, has taken place. About fifteen
years ago, the maximum rating of turbo-altern:tors was in the range of 200
MVA, while machines in the range of 1 to 1.5 GVA have recently been built,
and even larger ones are under consideration. Similar increases have taken
place in the rating of transformers, cables, and many other electrical devices.

This situation poses new problems to the designer. For instance, in the past,

v



2 Finite Elements in Electrical and Magnetic Field Problems

valuable help was forthcoming from experimental data obtained from working
systems. However, the increase in ratings and related costs has greatly reduced
the availability of experimental data.

On the other hand. it is impractical to increase the volume of electrical
devices in proportion to their rating, for obvious economic reasons. It is,
therefore, necessary to increase stresses in materials, and to adapt new design
criteria to the changed requirements. As a consequence, new design solutions
become possible; for instance, the use of superconductors has been proposed in
the case of electrical machines and cables. Frequently, new devices are also
notably different in shape from previous ones; consequently, old computation
procedures become inapplicable.

Therefore. an increase in accuracy of theoretical performance prediction is
necessary, especially in view of the complexity of the geometry of problems
involved and the characteristics of materials used.

For instance, a better knowledge of space and time distributions of both
electric current and magnetic flux in an electric machine is necessary in order
to obtain a reliable description of power losses and electromechanical stresses,
from which the thermal and mechanical design of the machine must be
derived. But this may require a generalization of steps of the computation
procedures, such as taking into account anisotropy, saturation, and hysteresis
of magnetic materials, the laminar structure of magnetic cores, the presence of
slots and air gaps, the spatial distribution of conductors and dielectric
materials, and the influence of frame materials, which can no longer be
regarded as electrically and magnetically passive. Besides, the computation
must be performed under time-varying conditions, which are generally non-
sinusoidal on account of the nonlinearities of materials or due to the transient
conditions of applied voltages or torques. Furthermore, the general hypothesis
according to which the whole machine is isothermal can no ionger. be accepted.
This hypothesis allows us to treat the electric and the magnetic fields inde-
pendently, by using Maxweil's equations and constitutive relations in a form
independent of temperature. If the hypothesis is no longer valid, constitutive
relations must also contain temperature, and thermal field equations must be
added to Maxwell'sequations. Slmllar problemsarise when determmmgstressesm
dielectric materials.

The above considerations are applicable to high power tradmonal machmes,
such as transformers, turbo-generators, or salient pole alternators. They also
apply equally well to nontraditional versions of .the machines, as well as to
other electrical apparatus, such as high-voltage equipment, high-field magnets,
direct-current generators, and motors with limit performances. They can be
extended to the implementation of interesting nontraditional electrical devices,
such as linear motors, levitation systems and, possibly, special magnets for
nuclear fusion, MHD generators, and energy storage. In these cases, we have
to deal with problems in which geometries involved are generally not suitable
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for traditional approaches, and, therefore, require powerful calculation
procedures.

Another electrical engineering area requiring efficient computation tech-
niques is electronics, especially in the high-frequency range. The technologies
of semiconductor devices and integrated circuits, which have produced the
rapid growth of the electronics industry, have also made necessary specific
requirements for solving problems with general forms of nonlinearities in
semiconductor transport equations, and for taking into account, as far as
possible, two- or three-dimensional effects. Other types of electronic device (for
instance, in the area of wave propagation systems, or in the presence of
plasmas or of special materials, such as piezo-electric ones) also require new
computational techniques.

The conditions outlined above have strongly influenced the historical de-
velopment of computational methods for boundary-value problems, and ex-
plain the present interest and activities in such a field, particularly in numerical
procedures.

The methods used from Maxwell onwards for the solution of boundary-
value problems can be divided into four categories: analogue, graphical,
analytical, and numerical. i

Analogue procedures consist in obtaining the unknown field by experimen-
tal measurements on an analogue of the field region, i.e. on a field region
governed by the same equations and with the same boundary and interface
conditions. These procedures have generally been used only for Laplace’s
equation under two- or three-dimensionai conditions. In fact, it has been
practically impossible to model inhomogeneities, nonlinearities, and sp on, by
means of media different from the ones involved in the redl problem. Besides,
in its three-dimensional version (such as, for instance, electrolytic tank or
resistance network), this method is rather expensive and cumbersome, whereas
the more convenient versions (such as, for example, graphitic paper or elastic
membrane) are restricted to two-dimensional fields.

Graphical procedures have long been used, but they are restricted to
Laplace’s equation for two-dimensional geometries because they are generally
based on the properties of analytic functions (see, for instance, the Lehmann
method). It should be added that their accuracy is limited even when they are
carefully applied.

The development of analytical methods advanced a good deal while numeri-
cal methods were still in their infancy. These methods are still widely used and
include series solution and conformal mapping techniques. Other methods in
vogue are integral equations, variational formulations, or approaches specific to
various problems. The last mentionec - aes, such as the method of images or the
inversion method, are generally applicable to simple geometries and mater-
ials. In such cases, solutions are found by inspection and are based on known
solutions to analogous problems, or by the use of symmetry conditions, etc.
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Series solutions are generally obtained by the so-called method of sepa-
ration of variables. This method can be mainly applied to Laplace or
Helmholz equations in two- or three-dimensional problems, and can also be
applied in time-dependent problems, for instance in the ones governed by
diffusion or wave equations. Even if such a method can be considered as being
more general than the previous ones, it suffers from severe restrictions
essentially related to the treatment of boundary and interface conditions. In
practice, its use requires the existence of a suitable coordinate system, which must
fulfil two conditions: (i)every boundary or interface surface must coin¢ide with an
equi-coordinate surface: (i1) the coordinate system must allow the separation of
variables. Both these conditions are rarely satisfied in complex problems. The
calculations require the use of special functions (such as Bessel, Legendre, elliptic)
which often are not easily handled.

The separation of variables method can also be applied to inhomogeneous
equations like the Poisson equation. In this case. it is necessary t6 add a
particular integral of the inhomogeneous equation to the general integral of
the corresponding homogeneous one: the particular integral can generally be
computed by volume or surface integration.-However, it is often quite difficult
to perform such an integration analytically, and special techniques have been
introduced to solve problems, even for very simple geometries. We recall here
Rogowski’s and Roth’s methods, developed for the solution of magnetic fields
in transformers and inductors.

The solution of field problems by conformal mapping is another analytical
approach which has been extensively used. It is based on the properties of
analytic complex functions, so that it can only be applied to problems which
can be reduced to Laplace’s equation in a two-dimensional region. In such a
domain, conformal mapping may often be more powerful than the series
method because it can yield closed-form solutions for more complicated
regions. Severe limitations have, however, to be placed on the geometry of
problems to avoid difficulties in the integration of complex functions. Analytic
functions can also be used to generate coordinate transformations preliminary
to the handling of equations by other methods, but this application is also
limited.

The aforesaid is a brief description of analytical methods. This category is
very broad and includes algorithms that generalize and extend the above
procedures, even if laboriously, The major deficiency of the analytical methods
is the lack of generality. The classes of problems for which analytical solutions
exist that can be considered somewhat general are by far the simplest ones and
many algorithms are applicable only to two-dimensional and steady-state
problems. Besides, algorithms for inhomogeneous and nonlinear problems are
practically non-existent excepting for some extremely simple and special problems.
Another notable deficiency of analytical methods lies in the effort required in
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obtaining the field solutions. suck as developing special aigorithms and
discovering artifices.

. The deficiencies of analytical methods are to a large extent eliminated in
numerical methods, which have come to the fore with the advent of large
digital computers. The principal numerical methods that are in vogue can be
subdivided into finite difference schemes,.image methods, integral equation
techniques, and variational formulations.

Finite difference schemes were the first to be widely used, in practice since
about 1940, even if they have been traced back to Gauss.! For one-
dimensional problems a complete finite-difference approach can already e
found in the graphical string polygon method for finding deflections of beams
developed by Mohr in 1868.7 The first application to two-dimensional pro-
blems was made by Runge in 1908.° There was a parallel development of

. methods of solution for the large algebraic equations resulting from finite-
difference schemes; it was based on:the fundamental contributions by Gauss.*
Jacobi,® and Seidgl® and on the results obtained by Richardson’ and

Liebmann® in the area of iterative methods, and on the works By Gauss.’
Doolittle,'® and Choleski'' in the area of direct methods.

' As we can see, numerical methods had been defined long before their wide use,
which began with the advent of high-speed computers.

- The basis of finite-difference schemes is the replacement of a continuous
domain with a grid of discrete points (‘nodes’), the only ones at which the
value of unknown quantities are computed. The reduction. of the equations
and of the boundary or interface conditions, defined in the continuous domain,
to the discretized equations valid for the nodes is performed by means of
various algorithms, which replace derivatives and integrals with ‘divided-
difference” approximations obtained as functions of the nodal values. This can
b& accomplished, for instance, by using interpolating functions,' which are not
defined in specific subdomains but simply in the neighbourhood of a node.

In its traditional versions, the grid is a regular one: that is, a rectangular grid
with nodes at the intersections of orthogonal straight lines or a polar grid with
nodes at the intersections of orthogonal circles and radii. This restrictive
approach, which simplifies the discretization algorithms, is not necessary.
However, the use of general curvilinear grids (or of irregular ones, seldom
proposed in the past) has not been successful, so that regular grids are the only
ones in practice to date. As a consequence, severe difficulties are encountered
in solving many problems using finite-difference schemes, and therefore their
efficiency is considerably limited. This is essentially due, apart from other less
important problems, to geometrical reasons related to the fitting of the grid to
the shapes of boundaries and interfaces involved. In fact, a regular grid is not
suifable for problems with very steep variations of fields. The grid must indeed
be denser in regions of high field gradients, and this requires either a very large .
number of nodes, so that computation time and memory requirements are
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significantly increased, or a complex algorithm to increase the density of the
grid artfully. Moreover, a regular grid is not suitable for curved boundaries or
interfaces, because they intersect gridlines obliquely at points other than nudes.
This may not be a problem under Dirichlet boundary conditions, but poses
difficulties under Neumann boundary conditions or under interface conditions
involving normal derivatives. These situations require sophisticated interpo-
lation schemes which are dijfficult to implement in an automatic form, and com-
plicate the solution of algebraic equations resulting irom the discretization.

In spite of these shortcomings, finite-difference schemes, in their traditional
version, monopolized the area of numerical methods in electrical engineering
practically up to 1970. In any case, they led to valuable results: we may recall '
here the work of Erdélyi’s group at the University of Colorado,'? and the
activities of Fritz, Miiller, and Wolff in the area of alternators and d.c.
machines.'?

Alternative methods have also been proposed in the area of image methods
and integral equation techniques which have intensive but limited application
in special areas. We mention here particularly, in the area of image methods,
the work of Prinz and Singer’s group.'* They developed the charge method, in
which the values of image charges are computed to simulate three-dimensional
high voltage fields. Likewise, in the area of integral equations, we recall the
activities of Trowpridge’s' group at the Rutherford Laboratory in the com-
putation of three-dimensional structures of magnets.'”> Both methods seem
mainly oriented towards three-dimensional nonsymmetrical problems, and, in
this connection, they could provide interesting developments.

In other engineering areas, particularly in civil engineering, the drawbacks
of traditional finite-difference schemes have been recognized at an early stage
and alternative methods have been developed, such as variational pro-
cedures. This process, which can also be traced back to the past century, has
led to the modern form of the finite-element method, and can be considered
to have been completely established in the late fifties. Actually, the term ‘finite-
element method’ was first used in a paper by Clough in 1960.'¢

Variational methods consist in formulating the equations of boundary-value
problems in terms of variational expressions called ‘energy functionals’, which,
in electrical applications, often coincide with the energy stored in the field. The
Euler equation of this functional will generally coincide with the original
partial differential equation. In the finite-element method, the field region is
subdivided into elements, that is, into subregions where the unknown quan-
tities, such as, for instance, a scalar or a vector potential, are represented by
suitable interpolation functions that contain, as unknowns, the values of the
potential at the respective nodes of each element. The minimization of the
energy functional by the use of such interpolation functions generates an
algebraic system of equations, as in the finite-difference methods, and the
potential values at the nodes can be determined by direct or iterative methods.



