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FOREWORD

At the start of World War I, rumor has it, the old War Department
declined with regret the proffer of aid from the American Chemieal
‘Seciety on the grounds that the Department already had a chemist
thinking about their problems. No significant scientific advance in
armament had taken place by the opening rounds of World War I
However, in the relatively short span since 1940 a scientific and
technological revolution has swept this planet with a pace hitherto
unknown.

New discoveries have unleashed forces, opened vistas, and laid
bare accomplishments of the magnitude that makes addicts of
science fiction enthusiasts. New industries literally have sprung forth
from the fruits of scientific research, creating unforeseen demands for
trained, skilled, and educated personnel. From a nuclear pile under
the stands at Stagg Field, Chicago, has grown a multibillion-dollar
industry just in its swaddling clothes. From the fertile imagination
of mathematicians has emerged the fountainhead of the scientific
revolution excited by the high-speed digital computing machine.
The electronies industry of 1940 has little resemblance to the lusty
giant of today. And many of the tools with which' the biologists and
medical scientists attack the problems of cancer and other dread
diseases were not yet born at the outbreak of World War II.

Not only did these vast new frontiers of science open, but new
ones are threatening to push on to the stage at any time. The store-
house of scientific information increases with positive acceleration.
Each new basic scientific discovery is multiplied in significance be-
eause of its meaning and power for other scientific activity and be-
cause of its impact upon our economy and society through applica-
tion and new industry.

A problem facing scientists for more than a generation has now
reached major proportions and threatens to stem the tide of
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the necessary flow of knowledge: How is it possible to keep abreast
of developments in one’s own field, as well as being aware, if only
through mental osmosis, of developments in peripheral realms? The
problem is further complicated. Each expert speaks a language
probably meaningful to the few who are likewise expert in that field.
But could not the engineer, chemist, or solid state physicist profit
significantly from a knowledge of the work done by the mathemati-
cian or the nuclear physicist? Is there a common methodology that
would bear fruit in all of the physical sciences?

In terms of this thinking, it is eminently clear that an educational
and training need exists. To meet this need, the Division of General
Education of New York University, with the co-operation of scien-
tific leaders from industry, Government laboratories, and the Uni-
versity, developed a series of co-ordinated lectures by the outstand-
ing men in scientific fields of current interest to industry, research
laboratories, and the universities.

The First Symposium on Recent Advances in Science was held at
Washington Square during the spring of 1954. It attracted 225 men
and women from metropolitan industries and faculties. This book,
an outgrowth of that Symposium on applied mathematics and phys-
ics, is, we believe, a contribution to the fundamental understand-
ing of the important work explicated by the several lecturers. It
is obvious that both the Symposium and this boek have required a
large degree of active co-operation and participation from many
different sources. The enthusiastic response to the need from the
Planning Committee was both inspiring and gratifying. It is only
fitting that recognition be given to them for their efforts.

To the members of the committee from industry and the research
laboratories, Lloyd V. Berkner, Richard Emberson, Elmer W.
Engstrom, James Fisk, Mervin J, Kelly, A. B. Kinzel, Eger Mur-
phree, C. G. Suits, I, on behalf of New York University, wish to
acknowledge my debt for their ideas, support, and general helpful-
ness. Without their devotion to the twin causes of education and
science, this Symposium would not have been possible. These scien-
tific leaders were always available for advice and took time from
their extraordinarily busy lives to consult with university represen-
tatives throughout the planning year.

Our university representatives likewise did yeoman work to make
the Symposium an important event for the scientific community.
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Dean Paul A. McGhee of the Division of General Education, Chan-
cellor Henry T. Heald, and Dean Thorndike Saville of the College
of Engineering encouraged and co-operated with the committee to
garner the best scientific talent to come to the podium. Professor
Serge Korff acted as chairman of the meetings; Professors George
Murphy and Morris Shamos did much of the preliminary work be-
fore the opening of the Symposium and have performed a superb
task against overwhelming odds in getting the Symposium into this
permanent form. In addition to these, our grateful acknowledgment
for their support goes to the other university members of the
Planning Committee: Professors Yardley Beers, Myron A. Coler,
Richard Courant, James Mulligan, John Vance, Carel van der
Merwe.

Sioney G. Rorm
New York University
May 1856



PREFACE

Scientific historians of the future may attach special significance
to the fact that the first half of the twentieth century saw the estab-
lishment of a number of highly technical industries. Many of the
basic discoveries of the first few decades have already been put to
commercial practice, and the fundamental ideas now being
developed will form the nuclei for new industries of the future. The
very rapid growth of the physical sciences quite naturally has led to
ﬁecmlua.txon, with the result that practicing scientists and engineers
too often &re but dimly aware of the latest developments outside
their immediate fields.

This book is & product of the. First Symposmm on Recent
Advances in Science, held at New York University during the spring
of 1954. The purpose of the Symposium, which was confined to
physics and applied mathematics, was to convey the basic ideas
in some of the newest and most active fields of study. The level of
presentation is probably best described as intermediate, inasmuch
as the lectures presupposed some scientific training, although not
necessarily in the particular subject areas. Nevertheless, it was
apparent that much benefit was derived from the lectures even by
those actively engaged in these fields.

Prominent among the topics will be found several phases of atomic
and nuclear physics. This is probably to be expected in view of the
enormous advances in these fields and the impact they have made
upon moderp engineering. The rapid rise of interest during the recent
years in the physical properties of solids is reflected in those chapters
that treat some of the aspects of solid state physics. Similarly, the
techniques of operations research, developed primarily for military
application, have only recently been turned to industrial problems,
for which they appear to offer great promise. The opening chapter
deals with what is probably the mest important tool of the engineer;

Vi..
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~ applied mathematics, while the concluding chapter reviews the re-
. cent advances in the light of their implications for future trends in
industrial development. Although the relsted topies of information
theory and computing machines were presented at the Symposium,
it unfortunately has not been possible to include this material in the
present volume.

We are grateful to the contributing authors for generously giving
their time to the preparation of their manuscripts, and we wish to
thank the American Sctentist for permission to reprint Dr. Shockley’s
article.

For various reasons it hag not been easy to prepare this printed
volume, as is evident from the publication date. However, we still
believe the title to be exact in that the contents reflect the most re-
cent advances in these fields. The chapters were prepared by some
of the most distinguished scientists in this country, and their sub-
jects are those in which they are acknowledged experts. Some repeti-
tion and lack of continunity are perhaps inevitable in a volume of
this sort, yet we feel that the primary purpose of the book has been
realized. We trust it may prove as rewarding to the reader as the
original lectures were to the listeners.

G. M. Mureny
May 1966 ’ M. H. Smamos
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Methods of Applied Mathematics

RicHARD COURANT

Introduction

“Applied” mathematics as distinct from “pure” mathematics is a
relatively recent phenomenon of scientific specialization. The dis-
tinction does not refer to fields of knowledge but rather to human
attitudes and motivations. Pure mathematics is directed towards
logical crystallization, abstraction, generalization; applied mathe-
matics: means close interconnection of mathematical methods with
physical reality, and it may mean subordination of logical complete-
ness to the need for results obtained by a mixed approach which
may, if necessary, utilize analytical methods as well as physical in-
tuition, numerical computation, and empirical reasoning.

Until the middle of the nineteenth century it was usual for great
mathematicians to represent both the pure and applied trends in
mathematics. The most striking example was Gauss. As a matter
of course, this great creator of modern algebra, namber theory, func-
tion theory, differential geometry, and non-Euclidean geometry took
an active part in the development of geodesy, astronomy, and elec-
trostatics. He built the first electrical telegraph (with Weber) and
was fully conscious of the importance of this invention. He laid the
foundation of the pension fund for the widows and orphans of his
faculty colleagues. Although he valued highest his construction of
the regular 17-gon and proclaimed number theory the queen of
sciences, he spent most of his professional life enthusiastically on
what we would call today applied mathematics. The mathematician
Clerk Maxwell, interpreting in the form of partial differential equa-
tions the intuitive notions of Faraday and the quantitative formula-~
tion of Biot-Savart, created the basis for modern electromagnetic
theory and practice. Henri Poincaré, another of the great mathema-
ticians of the past century, made decisive contributions to the under-
standing of the propagation of radio waves across the surface of the
earth. Perhaps one may consider Bernhard Riemann as the last of

1



2 RICHARD COURANT

the mathematical universalists who made a deep mark in pure as
well as applied mathematics. His paper on dynamies of compressible
§a%3 opened up an entirely novel field. The professional mathema-~
ticians remembered only the elegant, purely mathematical appendix
to this paper, and it was left to engineers and physicists to develop
the field of gas dynamics and aerodynamics, which some of them
did with amazing mathematical insight and ingenuity. Likewise in
other directions great mathematical contributions have been made
by physicists, in particular in connection with quantum theory.

In this country the trend Aamong professional mathematicians
toward isolation from other sciences was interrupted when, during
World War I, many pure mathematicians volunteered to give needed
mathematical help. Sometimes service of high scientific and tech-
nological caliber was rendered by mathemsticians who before had
belonged to the purist camp. Since the war, government agencies,
foremost among them the Office of Naval Research, have successfully
tried to maintain a better balance between the applied and pure
aspects of scientific activities in this country, and it seems certain
that these eforts will have a lasting effect.

There are two principles involved in all problems and methods of
spplied mathematics, the principle of idealization and the principle
of approximation. Idealization is fundamental even for the formula-
tion of the basic concepts and laws of nature. For example, the
density of a gas or fluid at a poiat P is determined by an ideblized
limiting process; we take the total mass of gas in a small sphere of
radiug e about P, divide this mass by the volume.(4x/3) ¢, and then
let ¢ tend to zero. This limiting process is actuslly an unrealistic
ideslization, since in a very small volume gas molecules are sparsely
and irregularly distributed. Still, without this and innumerable other
idealized concepts, physics and mechanics would be utterly impos-
sible. Newton’s laws and celestial mechanics deal with ideal mazss
points, elasticity, and acoustics with ideal continua, although these
continuous media consist actually of & finite but large number of
discrete individual particles.

Methods

The general scheme of methods of applied mathematws can be
represented by the following dlagram
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I— I,
v
~ R

S« 8,

R symbolizes a problem posed by reality, I the mathematical ideali-
zation, S its solution, 7, an approximate problem tending to I for
n == o, S, its solution. The task of the mathematician is to formu-
late a proper I, to find a proper approximation I», and to identify
approximately the desired S with S,.

For many individual problems the step B — I is the most decisive;
it often requires ingenuity, experience, and intuitive understanding
of the realities of physies, engineering, and other fields. Of course,
this step leaves great leeway for the applied mathematician. The
next step, I — I,, is decisive for mathematical success or failure;
this step also leaves open many possibilities for constructive imagina-~
tion. The comparison of S, with the theoretical solution § is often
s difficult theoretical problem which, however, must be tackled to
make sure that the whole process is meaningful.

Examples

We now turn to the discussion of a number of concrete examples
which will illustrate the general methodical scheme just described.

Domes

The transition B — I from reality to an acceptable idealized
mathematical model may be first illustrated by a quite special ques-
tion that arose in the winter of 1942-1943 in connection with under-
water warfare. Underwater sound ranging, as is well known, dapends
on_sending out & sound beam in water from a properly designed pro-
jector. If the projecting plate is submerged in water and attached to
a fast-moving ship, the water streaming around the plate causes
serious disturbances. To eliminate these disturbances the projector
is enclosed in a so-called “dome,” as shown.in Fig. 1, which is a con-
vex shell of metal or other material filled with water. Such domes, as
first constructed by the British, interfere only slightly with the
formation of a concentrated sound beam. However, during that
winter a great number of small submarine chasers were built and
equipped with sound gear similar to but smaller than the gear used
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before. While the manufacture of domes to fit this smaller gear was
under way, it was discovered that these smaller domes led to an in-
tolerable diffusion of the sound beam. A quick remedy was impera-
tive, and mathematical analysis of the problem was needed to sup-
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8eom of
Sound o
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Fig. 1. Dome -

port and to speed up experimental work. At first the mathematical

problem seemed formidable because it involved the integration of
the equation

3 3 a2
V’P+k’P=0 Ve = 6.‘62+5y—’+5;;’ (1)

in which the factor ¥ = w/c has different values within the shell
of the dome and outside, w denoting the frequency and ¢ the sound
velocity. However, a suitably idealized mathematical model was
found by the following process. The actual dome of small but finite
thickness is replaced by an ideal infinitely thin surface. The influence
of the dome is then replaced simply by conditions for jump discon-
tinuities of the disturbance ¢ of the beam across this surface. These
eonditions are:

p
gl = 1 an’

Q‘L:ﬂ’_*_ Y fi: ap)
(2] -2at-wvp- (2 -2)(5h+2n

in which the symbol [f] means the jump of the quantity f across the
surface, g is the disturbance of the acoustic pressure p caused by the
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dome, and the normal derivatives 8/0n are to be evaluated on the
surface S. The quantity H is the mean curvature of S, i.e., the average
of the curvatures of any two normal plane sections at nght angles to
each other. In addition to conditions (2) to be satisfied by q on 8,
¢ should be a solution of the differential equation

Vig + kag = O, (3)

which is regular everywhere except on S and which has the same
behavior as P at «. This problem possesses the unique solution

A sk () s

in which the integration is to be extended over the dome surface 8.
The quantities in square brackets are, of course, those given by con-
ditions (2), and 7’ is the distance from s fixed point (z, ¥, 2) at which
g(x, y, 2) is to be determined to the point of integration on S. This
formula yields the disturbance as the effect due to a layer of point
sources and a layer of dipoles distributed on S with intensities which
are known as soon as the original pressure p is known, since the quan-
tities in brackets are fixed in value by conditions (2). The relative

directional disturbance {22 i«Re ( ) would, finally, be ob-

tained from (4).

The solution (4) is valid for a shell of constant thickness, but it
could be extended without essential error to cases in which the dome
shell is made up of a not too large number of pieces, each of which
is of constant thickness. All that would be necessary would be to
insert a numerical factor d in the integrands on the right-hand side
of expression (4) which would be piecewise constant on 8. This for-
mula makes it quite easy to analyze the contribution to the distor-
tion of various factors, such as the curvature of the dome and the
density and sound velocity within it. Therefore, this little example of
proper ideslization, even without detailed numerical computation,
proved helpful to the designing engineer.

Shocks

The second, much broader, example of mathematical idealization
refers to the dynamics of compressible fluids, a field with many ap-
plications of ever-increasing importance. Here the complex reality of
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‘a gas or fluid eonsisting of an enormously large number of discrete
particles requires a great deal of mathematical idealization. One has
to introduce such averages as density, pressure, temperature, entropy,
and flow velocity; one makes further idealizing assumptions by ne-
glecting viscosity and heat conduction. Even so, one arrives at sys-
tems of differential equations which are nonlinear and which thus
present essentially new mathematical situations leading to phenomena
of the greatest practical importance.

Bernhard Riemann, Rankine, Hugoniot, and Rayleigh discovered
in the middle of the nineteenth century that the nonlinearity of com-~
pressible flow problems necessitated deviations from the traditional
belief of Newton and Laplace that solutions to physical problems
are determined by differential equations and initial conditions. In-
deed, discontinuities may occur in a compressible flow even though
. the initial data are wholly continuous, so that no continuation of
given initial data into a regular solution may be possible. “Shocks,”
i.e., discontinuities in density, pressure, and entropy which travel
through the fluid at high speed, occur in many cases. The problem
of determining flows with shock discontinuities which are not known
a priori is extremely difficylt, though of utmost importance for mod-
ern serodynamics and explosion theory.

The partial differential equations governing compressible flow in
the simplest cases are:

1. One-dimensional flow (of a polytropic gas)

pe+ (p)z =0 {conservation of mass),

(pu)s + (pu?)z+ P = O (conservation of momentum),

[p(ﬁg + e)l + [pu(fg -+ z)] =0 {(conservation of enérgy) ’

with p = Ap' (equation of state), 7 = v/(y — 1), and (y — 1)e =
p/p = &3/(y — 1), where ¢ = sound speed, » = density, p = pressure,
w = particle speed, ¢ = internal energy, and { = enthalpy.

2. Steady irrotational two-dimensionsl flow

wu? + 09 + (1 — u)c? = ¢& = const.,
(c® — udu, — uv(yy + vo) + (6 — My, = 0,

Uy = Uny
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with 4> = (y — 1)/(y + 1), where % and v are the components of
the fluid velocity; or

(¢ — u)¥,, — Quvday + (¢ — )8, = 0,

with ¥ = &,, v = &,, where ® is the velocity potential. Flow is super-
sonic if u* 4 1* > ¢* everywhere, subsonic if u? 4+ v® < ¢? everywhere,
transonie if both inequalities may hold (at different points).

These differential equations ¢an be valid only in regions of con-
tinuity. At shock transitions certain ‘“shock conditions” restricting
the nature of permissible discontinuities must be satisfied. The prin-
ciple followed by Riemann, Hugoniot, and others in deriving these
conditions, which have the form of finite equations, is that they should
express at the shock the same ‘“‘conservation laws” (in particular,
conservation of mass, of momentum, and of energy) as the differ-
ential equations of flow in regions of continuity.

It would at first seem that mathematical shock discontinuities do
pot represent physical reality, since, strictly speaking, fluid flows are
continucus. However, the above equations represent an idealized
flow without viscosity or heat conduction. Thus it is natural to try
to set up the full set of equations governing the flow, taking these
effects into account, solve these equations, and then let the viscosity
and heat conductivity approach zero. One may expect that for small
values of viscosity and heat conduectivity the solution, though con-
tinuous, will vary extremely rapidly in a narrow strip of the z,t-
plane, and that as these parameters approach zero this strip will
contract to a curve, while the solution will approach different values
on the two sides of this curve. Indeed, in the simple cases in which
this has been done the curve so obtained corresponds in position to
the shock predicted by the “idealized” set of equations, and the
limiting values of the sclution on the two sides of the shock satisfy
the shock conditions mentioned in the preceding paragraph.

Shocks, or “shock waves” as observed in meny phenomena, have
striking properties not present in acoustical, electromsgnetic, or
optical wave propagation. Their speed is “‘supersonic.” The angle at
which they are reflected from a rigid wall is different from their angle
of incidence, as may be seen in Fig. 2. They may lead to very high
pressures. o

Problems involving shocks pose many questions of theoretical in-
terest. These questions deal with the existence and uniqueness of the
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solution of the initial value problem for a partial differential equa-
tion if this solution is permitted to have discontinuities but is re-
quired to satisfy shock conditions at these discontinuities. Only very
rudimentary results have as yet been obtained in this area, since
even the simplest problems involving shocks seem to defy the power
of pure analysis.

- -

\\

Fig. 2. Shock Reflection

Indeed, the flight of high-speed airplanes and missiles, as well as
phenomena occurring in jets and nozzles, in combustion chambers
of engines, and in all sorts of explosions, leads to fluid flow problems
of such variety and difficulty that in only a few typical but highly
simplified cases are analytic results available. It is therefore of the
utmost significance that the development of high-speed electronic
computing machines has recently made it possible to apply to many
of these problems numerical methods which bring their solution
within the range of present-day mathematical capabilities.

Numerical Methods

We shall now describe the general procedures involved in the
application of numerical methods to the solution of differential equa-
tion problems.

Historically, the first such methods arose from consideration of
boundary value problems and eigenvalue problems for elliptic partial
differential equations which correspond to conditions of equilibrium.
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These problems are related to the following “variational” principle:
States of equilibrium have minimum potential energy. Indeed
the equivalence between boundary value problems of partial differ-
ential equations and problems of the calculus of variations has been
a central point in analysis since the time of Gauss. At first, theoretical
interest in existence proofs was dominant; only much later were
practical applications envisaged by two physicists, Lord Rayleigh
and Walther Ritz, who independently conceived the idea of utilizing
this equivalence for numerical calculation of the solutions by sub-
stituting for the variational problems simpler approximating extre-
mum problems in which only a finite number of parameters need be
determined. In the works of Rayleigh, especially in his classical Theory
of Sound, this procedure was first used. However, Ritz gave a mas-
terly account of the theory and at the same time applied his method
to the calculation of the nodal lines of vibrating plates, a problem
of classical physics that previously had not been satisfactorily treated.

Thus methods emerged which could not fail to attract engineers
and physicists; after all, the minimum principles of mechanics are
more suggestive than the differential equations. Great successes in
applications were soon followed by further progress in the under-
standing of the theoretical background, and such progress in turn
has resulted in advantages for the applications.

It turned out that the specific procedure used by Ritz and Rayleigh
was practical only in particular cases and that the use of finite differ~
ence methods was preferable. Methods of the latter type have since
become universally accepted as the most direct and promising tools
of numerical analysis.

Finite Differences

In these methods, the continuum of values which can be assumed
by the independent variables z, y, - - -, t is replaced by a finite set
of “net points’” whose coordinates are integral multiples of certain
fixed “mesh widths,” one for each variable. Usually equal mesh widths
are chosen for the space dimensions, with possibly a different one in
time. Differential equations become equations involving a finite
number of difference quotients; integrals are replaced by finite sums.
Thus the differential equation problem is reduced to a problem with
only a finite number of unknowns,



