PHY

国外物理名著系列 7

(影印版)

Optics and Lasers

Including Fibers and Optical Waveguides (5th Edition)

光学与激光 ——光纤和光波导

(第五版)

M. Young

图字:01-2007-1094

M. Young: Optics and Lasers: Including Fibers and Optical Waveguides (5th Edition)

© Springer-Verlag Berlin Heidelberg 2000.

This reprint has been authorized by Springer-Verlag(Berlin/Heidelberg/New York) for sale in the People's Republic of China only and not for export therefrom,

本书英文影印版由德国施普林格出版公司授权出版。未经出版者书面许可,不得以任何方式复制或抄袭本书的任何部分。本书仅限在中华人民共和国销售,不得出口。版权所有,翻印必究。

图书在版编目(CIP)数据

光学与激光:光纤和光波导:第5版=Optical and Lasers; Including Fibers and Optical Waveguides; 5th Edition; 英文/(美)杨(Young, M.)编著.一影印本.一北京;科学出版社,2007

(国外物理名著系列;7)

ISBN 978-7-03-018787-1

I. 光··· II. 杨··· III. ①光学-英文②激光技术-英文 IV. ○43 TN24 中国版本图书馆 CIP 数据核字(2007)第 042391 号

责任编辑:胡凯 鄢德平/责任印制:赵德静/封面设计:陈敬

徐学出版社 出版

北京东黄城根北街16号 邮政编码:100717 http://www.sciencep.com

★母科多陀 中刷 厂 印刷 科学出版社发行 各地新华书店经销

定价:79.00元

(如有印装质量问题,我社负责调换(科印))

《国外物理名著系列》(影印版)专家委员会名单

(按姓氏笔画排序)

于 渌 王鼎盛 刘正猷 刘寄星 向 涛杨国桢 邹英华 宋菲君 张元仲 赵凯华 侯伯元 聂玉昕 阎守胜 裴寿庸 戴元本

国外物理名著(影印版)系列序言

对于国内的物理学工作者和青年学生来讲,研读国外优秀的物理学著作是系统掌握物理学知识的一个重要手段。但是,在国内并不能及时、方便地买到国外的图书,且国外图书不菲的价格往往令国内的读者却步,因此,把国外的优秀物理原著引进到国内,让国内的读者能够方便地以较低的价格购买是一项意义深远的工作,将有助于国内物理学工作者和青年学生掌握国际物理学的前沿知识,进而推动我国物理学科研和教学的发展。

为了满足国内读者对国外优秀物理学著作的需求,科学出版社启动了引进国外优秀著作的工作,出版社的这一举措得到了国内物理学界的积极响应和支持,很快成立了专家委员会,开展了选题的推荐和筛选工作,在出版社初选的书单基础上确定了第一批引进的项目,这些图书几乎涉及了近代物理学的所有领域,既有阐述学科基本理论的经典名著,也有反映某一学科专题前沿的专著。在选择图书时,专家委员会遵循了以下原则:基础理论方面的图书强调"经典",选择了那些经得起时间检验、对物理学的发展产生重要影响、现在还不"过时"的著作(如:狄拉克的《量子力学原理》)。反映物理学某一领域进展的著作强调"前沿"和"热点",根据国内物理学研究发展的实际情况,选择了能够体现相关学科最新进展,对有关方向的科研人员和研究生有重要参考价值的图书。这些图书都是最新版的,多数图书都是 2000 年以后出版的,还有相当一部分是 2006 年出版的新书。因此,这套丛书具有权威性、前瞻性和应用性强的特点。由于国外出版社的要求,科学出版社对部分图书进行了少量的翻译和注释(主要是目录标题和练习题),但这并不会影响图书"原汁原味"的感觉,可能还会方便国内读者的阅读和理解。

"他山之石,可以攻玉",希望这套丛书的出版能够为国内物理学工作者和青年学生的工作和学习提供参考,也希望国内更多专家参与到这一工作中来,推荐更多的好书。

中国科学院院士 中国物理学会理事长 2007年3月20日 For my father, Professor Arthur K. Young, from whom I am still learning the art of clear thinking And God said: "Let there be light." And there was light.

And God saw the light, that it was good;
and God divided the light from the darkness.

The Torah

And the light is sweet, and a pleasant thing it is for the eyes to behold the sun.

KOHELETH (ECCLESIASTES)

But soft! what light through yonder window breaks?

It is the east, and Juliet is the sun!

SHAKESPEARE

Light breaks where no sun shines.

Dylan Thomas

Sadness flies on the wings of morning and out of the heart of darkness comes light.

GIRAUDOUX

Let us bathe in this crystalline light!
POE

... On a river of crystal light,
Into a sea of dew.
EUGENE FIELD

I see a black light.
VICTOR HUGO (last words)

Do not go gentle into that good night ... Rage, rage against the dying of the light.

DYLAN THOMAS

Preface

This is the fifth edition of a book that first appeared in 1977, when it was half its present length. In the twenty-odd years since that first edition was published, optical communications has burgeoned, computers have become ubiquitous, and video techniques have supplemented classical optics. Hence, the book now includes sections on optical fibers and integrated optics, video microscopes and digital image processing, holography and coherent optical processing, and scanning confocal microscopy. Thus, whereas much of the book is devoted to classical optics, the denouement is the coverage of modern optics, lasers, and optical waveguides. Nevertheless, the sections on classical optics include material, such as those on coherence and resolution, that is not readily found in texts at similar levels.

The fourth edition included over 100 problems; many are designed to display important results that are not discussed in the text. I have therefore added to this edition the solutions to all the problems. I hope that the inclusion of the solutions will make the book more amenable to self-study, but also that the solutions will enhance the usefulness of the book in the classroom. Finally, I think that optics has a lot of terms that are sometimes not easily understood or whose technical meanings differ from their colloquial meanings; "focal point", "grain", "intensity", and even "light" are examples. I have therefore added a glossary to the book.

Optics has been changing greatly for over 40 years, since the invention of the laser. Partly because of the applied or engineering nature of much of modern optics, there has been a need for a practical text that surveys the entire field. Such a book should not be a classical-optics text but, rather, should be strong on principles, applications, and instrumentation; on lasers, holography, and coherent light; and on optical-fiber waveguides and integrated optics. On the other hand, it should concern itself relatively little with such admittedly interesting topics as the formation of the rainbow or the precise determination of the speed of light.

My purpose, therefore, has been to write an up-to-date textbook that surveys applied or engineering optics, including lasers, optical processing, optical waveguides, and other areas that might be called modern optics. I have attempted to treat each topic in enough depth to give it considerable practical value, while keeping it as free from mathematical detail as possible. Because I

have surveyed applied optics in a very general way (including much more than I would attempt to incorporate into a single, one-semester college course), this book should also be a useful handbook for the practicing physicist or engineer who works from time to time with optics. Any of the material is appropriate to an introductory undergraduate course in optics; the work as a whole will be useful to the graduate student or applied physicist with scant background in optics.

The book originated in class notes for several one-semester courses that I offered in the Electrical Engineering Curriculum at Rensselaer Polytechnic Institute and in the Physics Department of the University of Waterloo (Canada), before I joined the Optoelectronics Division of the National Institute of Standards and Technology. Most of the courses were at the second-and fourth-year level, but I have drawn much additional material from graduate courses I have offered in lasers and related areas. I have also used the book as a textbook for courses in the Electrical and Computer Engineering Department of the University of Colorado and in the Electronics Department of the Weizmann Institute of Science. To make the book as useful to as large an audience as possible, I have included short reviews of such subjects as complex-exponential notation, superposition of waves, and atomic energy levels.

Nearly all the references are to books or reviews and are chosen to allow the reader to explore any topic in greater detail. The problems are designed to help increase the reader's understanding and, sometimes, to derive a useful result. Certain portions of the text are largely descriptive; there I have used comparatively few problems.

It is my very great pleasure to acknowledge the invaluable assistance of the first editor of this book, David MacAdam, whose guidance and comments have led to a clearer, more readable, and more complete work. My former officemate at Rensselaer Polytechnic Institute, William Jennings, read the early versions with great care, offered excellent suggestions, and occasionally made me rewrite the same passage several times with very salutary results. Helmut Lotsch of Springer-Verlag ably supervised the production of the early editions of the book and adhered only to the highest standards.

I also acknowledge my debt to my former professors and fellow students at the Institute of Optics of the University of Rochester. My closest advisers there were Michael Hercher and Albert Gold; I also have warm memories of Philip Baumeister, Parker Givens, and others. My first optics course was Rudolf Kingslake's introductory optical-engineering course, and I still occasionally refer to his duplicated course notes.

I have been working, on and off, with optical-fiber communications since about 1972; the number of people I have learned from is, as a practical matter, nondenumerable. However, I want to single out for acknowledgement my former colleagues and co-editors of the Optical Waveguide Communications Glossary and, in particular, Robert Gallawa and Gordon Day of NIST in

Boulder. Neither of these able scientists ever lets me get away with anything, and Bob Gallawa has offered many pithy comments on the chapters on optical waveguides. I am equally grateful to Ernest Kim for his critical reading of the entire third edition. Kevin Malone and Steven Mechels formerly of NIST, suggested many worthwhile improvements, while Paule Hale of NIST reviewed the material on noise in detectors with great care. Roberto Forneris and Yara Forneris of the University of Sao Paulo, Brazil, and Burton Brody of Bard College pointed out a number of errors and made many helpful suggestions.

Additionally, I thank Tim Ohno of the Colorado School of Mines for suggesting the glossary and Reuben Collins of the Colorado School of Mines for a tutorial on near-field scanning microscopy. Theodor Tamir, the editor of the second edition, offered dozens of helpful suggestions. I also acknowledge my very good fortune to have been a Visiting Scientist at the Weizmann Institute of Science. A course I taught there gave me the impetus to organize, edit, and supplement my problems and led to their inclusion in this volume.

Finally, I thank Hans Jürgen Koelsch of Springer for giving me the opportunity to revise and publish this fifth edition, and Torsten Baade, Kristina Uhlendorf, and Barbara Luedge of the Friederich-Schiller University of Jena for carefully weeding the errors from the text and, in particular, from the problem solutions. Any errors that persist, like the weeds in my lawn, are mine alone.

Boulder, Colorado, June 2000

M. Young

Contents

1.	Inti	oducti	ion	1
2.	Ray	Optio	es	5
	2.1	Reflec	tion and Refraction	5
		2.1.1	Refraction	5
		2.1.2	Index of Refraction	6
		2.1.3	Reflection	6
		2.1.4	Total Internal Reflection	7
		2.1.5	Reflecting Prisms	8
	2.2	Imagii	ng	9
		2.2.1	Spherical Surfaces	9
		2.2.2	Object-Image Relationship	11
		2.2.3	Use of the Sign Convention	13
		2.2.4	Lens Equation	13
		2.2.5	Classification of Lenses and Images	15
		2.2.6	Spherical Mirrors	16
		2.2.7	Thick Lenses	17
		2.2.8	Image Construction	19
		2.2.9	Magnification	20
		2.2.10	Newton's Form of the Lens Equation	22
			Lagrange Invariant	22
			Aberrations	23
			Spherical Aberration of a Thin Lens	26
	Prob			28
3.	Opt	ical In	struments	31
	3.1		ye (as an Optical Instrument)	31
	3.2	-	Camera	34
		3.2.1	Photographic Emulsion	35
		3.2.2	Sensitometry	36
		3.2.3	Resolving Power	39
		3.2.4	Depth of Field	39
	3.3		tion Systems	41
	3.4		fiying Glass	42
	0.4	**ragim	uyms Giass	44

XII Contents

	3.5		43
	3.6		4
			47
	3.7	Telescope	48
		3.7.1 Pupils and Stops	49
		3.7.2 Field Stop and Field Lens	5(
		3.7.3 Terrestrial Telescopes	5]
	3.8	Resolving Power of Optical Instruments	52
			52
		3.8.2 Telescope 5	53
		3.8.3 Microscope §	54
		3.8.4 Condensers	55
	3.9	Near-Field Scanning Optical Microscope	57
	Pro	blems 6	60
4.	Lig	ht Sources and Detectors	65
	4.1		65
			65
		4.1.2 Photometric Units	67
		4.1.3 Point Source	68
		4.1.4 Extended Source 6	39
		4.1.5 Diffuse Reflector 7	70
		4.1.6 Integrating Sphere	71
		4.1.7 Image Illuminance	73
		4.1.8 Image Luminance 7	75
	4.2		77
			77
			30
		4.2.3 Line Sources	31
		4.2.4 Light-Emitting Diodes (LEDs)	34
	4.3		35
			35
			90
			92
	Prol	blems 9	7
5 .	Wa	ve Optics	
	5.1	Waves 10	
		5.1.1 Electromagnetic Waves	
		5.1.2 Complex-Exponential Functions	
	5.2	Superposition of Waves	
		5.2.1 Group Velocity	5
		5.2.2 Group Index of Refraction	6
	5.3	Interference by Division of Wavefront	7
		5.3.1 Double-Slit Interference	7

		5.3.2	Multiple-Slit Interference	
	5.4	Inter	ference by Division of Amplitude	11
		5.4.1	Two-Beam Interference 1	11
		5.4.2	Multiple-Reflection Interference	
	5.5	Diffra	action	
		5.5.1	Single-Slit Diffraction	
		5.5.2	Interference by Finite Slits	
		5.5.3	Fresnel Diffraction	
		5.5.4	Far and Near Field 1	
		5.5.5	Babinet's Principle 1	
		5.5.6	Fermat's Principle	
	5.6		rence	
		5.6.1	Temporal Coherence	
		5.6.2	Spatial Coherence	30
		5.6.3	Coherence of Thermal Sources	
		5.6.4	Coherence of Microscope Illumination	31
	5.7		retical Resolution Limit	
		5.7.1	Two-Point Resolution	
		5.7.2	Coherent Illumination	
		5.7.3	Diffused, Coherent Illumination	
		5.7.4	Quasi-Thermal Source	
	Pro	blems		38
6.	Inte	erferoi	metry and Related Areas	13
	6.1	Diffra	ction Grating 14	13
		6.1.1	Blazing	15
		6.1.2	Chromatic Resolving Power	
	6.2	Miche	elson Interferometer	16
		6.2.1	Twyman-Green Interferometer	8
		6.2.2	Mach-Zehnder Interferometer	19
	6.3	Fabry	-Perot Interferometer	
		6.3.1	Chromatic Resolving Power	0
		6.3.2	Free Spectral Range	2
		6.3.3	Confocal Fabry-Perot Interferometer	3
	6.4	Multil	ayer Mirrors and Interference Filters	3
		6.4.1	Quarter-Wave Layer	3
		6.4.2	Multilayer Mirrors	4
			Interference Filters	
	Prob	olems .		5
7.	Hole	ograpi	ny and Image Processing	7
	7.1	Hologi	raphy	7
		7.1.1	Off-Axis Holography	9
		7.1.2	Zone-Plate Interpretation	1
		7.1.3	Amplitude and Phase Holograms 16	2
			3	-

Contents

XIII

		7.1.4	Thick Holograms	. 163
	7.2	Optic	al Processing	
		7.2.1	Abbe Theory	. 166
		7.2.2	Fourier Series	
		7.2.3	Fourier-Transform Optics	. 171
		7.2.4	Spatial Filtering	. 172
		7.2.5	Phase Contrast	
		7.2.6	Matched Filter	. 178
		7.2.7	Converging-Beam Optical Processor	. 180
	7.3	Impul	se Response and Transfer Function	. 181
		7.3.1	Impulse Response	. 181
		7.3.2	Edge Response	. 183
		7.3.3	Impulse Response of the Scanning Confocal Microscop	
		7.3.4	Image Restoration	
		7.3.5	Optical Transfer Function	. 188
		7.3.6	Coherent Transfer Function	
		7.3.7	Diffraction-Limited Transfer Functions	
		7.3.8	MTF of Photographic Films	
	7.4	Digita	d Image Processing	
		7.4.1	Video Camera	
		7.4.2	Single-Pixel Operations	
		7.4.3	Cross-Correlation	
		7.4.4	Video Microscope	. 198
		7.4.5	Dimensional Measurement	
	Prot	olems .		201
8.	Lası	ers		207
٥.	8.1		fication of Light	
	0.1	8.1.1	Optical Amplifier	
	8.2		ally Pumped Laser	
	0.2	8.2.1	Rate Equations	
		8.2.2	Output Power	
		8.2.3	Q-switched Laser	
		8.2.4	Mode-Locked Laser	213
	8.3		al Resonators	
	0.0	8.3.1	Axial Modes	
		8.3.2	Transverse Modes	
		8.3.3	Gaussian Beams	
		8.3.4	Stability Diagram	
		8.3.5	Coherence of Laser Sources	224
	8.4		c Laser Systems	225
		8.4.1	Ruby Laser	
		8.4.2	Neodymium Laser	227
		8.4.3	Organic-Dye Lasers	229
		8.4.4	Helium-Neon Laser	

				Contents	XV
		8.4.5	Ion Lasers		. 231
		8.4.6	CO ₂ Laser		. 232
		8.4.7	Other Gas Lasers		. 233
		8.4.8	Semiconductor Lasers		. 233
	8.5		Safety		. 235
		8.5.1	Sunglasses		
	Pro	blems	• • • • • • • • • • • • • • • • • • • •		. 237
9.	Ele	ctrom	agnetic and Polarization Effects		230
•	9.1		etion and Refraction		
		9.1.1	Propagation		
		9.1.2	Brewster's Angle		
		9.1.3	Reflection		
		9.1.4	Interface between Two Dense Media		
		9.1.5	Internal Reflection		. 243
		9.1.6	Phase Change		
		9.1.7	Reflection from Metals		
	9.2	Polari	zation		. 246
		9.2.1	Birefringence		
		9.2.2	Wave Plates		
		9.2.3	Glan-Thompson and Nicol Prisms		
		9.2.4	Dichroic Polarizers		
		9.2.5	Optical Activity		
	9.3	9.2.6	Liquid Crystals		
	9.3	9.3.1	near Optics		
		9.3.1 $9.3.2$	Second-Harmonic Generation		
		9.3.2 $9.3.3$	Phase Matching	• • • • • • • • •	. 255
	9.4		Optical Mixing	• • • • • • • • • •	. 257
	J.4	9.4.1	Kerr Effect		
		9.4.2	Pockels Effect		
		9.4.3	Electro-optic Light Modulation		
		9.4.4	Acousto-optic Beam Deflection		
		9.4.5	Faraday Effect		263
	Prob	olems .	***************************************		
10	Fib	0 0 0 000	Ontical Wavenuide		005
10.	10.1	Rave i	d Optical Waveguides	• • • • • • • • •	265
	10.1	Modes	in Optical Waveguides		205
	- J.	10.2.1	Propagation Constant and Phase Velocity .	• • • • • • • • • •	207 270
		10.2.2	Prism Coupler	• • • • • • • • • •	270
		10.2.3	Grating Coupler		272
		10.2.4	Modes in Circular Waveguides		274
		10.2.5	Number of Modes in a Waveguide		274
		10.2.6	Single-Mode Waveguide		275

	10.3	Graded-Index Fibers	276
		10.3.1 Parabolic Profile	276
		10.3.2 Local Numerical Aperture	278
		10.3.3 Leaky Rays	
		10.3.4 Restricted Launch	
		10.3.5 Bending Loss and Mode Coupling	
	10.4	Connectors	
		10.4.1 Multimode Fibers	284
		10.4.2 Single-Mode Fibers	287
		10.4.3 Star Couplers	
	Prob	olems	29 0
11.	Opt	ical-Fiber Measurements	293
		Launching Conditions	
		11.1.1 Beam-Optics Launch	
		11.1.2 Equilibrium Mode Simulator	
		11.1.3 Cladding-Mode Stripper	
	11.2	Attenuation	
		11.2.1 Attenuation Measurements	
	11.3	Fiber Bandwidth	
		11.3.1 Distortion	
		11.3.2 Material Dispersion	
		11.3.3 Waveguide Dispersion	
		11.3.4 Bandwidth Measurements	
		11.3.5 Coherence Length of the Source	
	11.4	Optical Time-Domain Reflectometry	
		Index Profile	
		11.5.1 Transverse Methods	
		11.5.2 Longitudinal Methods	
		11.5.3 Near-Field Scanning	
		11.5.4 Refracted-Ray Method	
		11.5.5 Core-Diameter Measurements	311
	11.6	Numerical Aperture of Multimode Fibers	
	11.7	Mode-Field Diameter	312
		lems	
12.	Inte	grated Optics	319
		Optical Integrated Circuits	
		12.1.1 Channel or Strip Waveguides	321
		12.1.2 Ridge Waveguide	322
		12.1.3 Branches	323
		12.1.4 Distributed-Feedback Lasers	324
		12.1.5 Couplers	
		12.1.6 Modulators and Switches	
		Planar Optical Devices	

12.2.1 Mode-Index Lenses
12.2.2 Luneburg Lenses
12.2.3 Geodesic Lenses
12.2.4 Gratings
12.2.5 Surface-Emitting Lasers
Problems
13. Solutions of Examples and Problems
Glossary
Suggested Reading Material
Subject Index

Contents XVII

1. Introduction

This is an applied optics book. It is written for physics or engineering students who will incorporate optical instruments into practical devices or who will use optical components in their laboratories or their experiments. My aim is to present as complete a picture of modern applied optics as possible, while going into as much depth as possible, yet using a minimum of advanced mathematics.

In much of the book, we will consider a beam of light as a collection of rays. When it is necessary to understand interference and diffraction, we will, in effect, add a wave motion to the rays. Less often, we will use the particle nature of light and, in effect, consider the rays as if they were streams of particles. If you like, you can call this the *triplicity* of light – rays, waves, particles. We will use the wave and particle natures of light without justification and without philosophical foundation: that is, as heuristic devices that enable us to understand certain kinds of phenomena in as much depth as we require for designing and understanding optical instruments and systems.

Deeper understanding of the wave and particle natures of light is presented in courses in quantum electrodynamics. Here, let me just say, without apology, that sometimes it is convenient to consider light as a wave motion and sometimes as a stream of particles, depending on the kind of experiment we are performing. Still, there is something mysterious about performing an experiment, like the double-slit experiment (Chap. 5), in which the light propagates and exhibits interference precisely as if it were a wave, and yet detecting the interference pattern with a quantum detector (Chap. 4), which interacts with the light as if it were a series of particles. The most common explanation, that particles in the subatomic world behave in a way that we do not find intuitive, is not very satisfying and gets us back where we began: we must, to some extent, consider the light as a wave when it propagates, but as a particle when it is absorbed by matter. When the wave motion is not important, as in many simple lens instruments, we ignore it and use a formalism based on rays.

The book begins with two chapters based on geometrical, or ray, optics. In Chap. 2, I treat as much ray optics as I find necessary for a complete understanding of the optical instruments introduced in Chap. 3. In particular, Chap. 2 derives the *lens equation*, which allows calculation of object and