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Preface

‘Electrodynamics may be said to consist of two parts, at different levels:
microscopic and macroscopic theory. The first contains the laws that govern
the interaction of fields and point particles — often grouped into stable sets
such as atoms and molecules — and the second those that describe the inter-
action of fields and continuous media. The two theories are linked together,
since the phenomena at the macroscopic level may be looked upon as being
the result of the interplay of many particles. Therefore one should be able -
to obtain the electromagnetic laws for continuous media from those for
point particles. Such a derivation, together with a discussion of the micro-
scopic starting points, forms the subject of this monograph.

The'programme will be carried out in the framework of both classical and
quantum theory. The classical theory is given in the non-relativistic approx-
imation and then in covariant formulation. In the latter various topics will
receive special attention: among these figure the covariant description of
composite particles, the obtention of stafistical averages in a relativistically
invariant way and a discussion of the en¢rgy-momentum tensor for con-
tinuous media. The quantum-mechanical theory will be formulated in such
a fashion that the analogy with classical theory can be exploited as far as
possible. This is achieved by representing the physical quantities by ordinary
functions rather than by operators. Again the non-relativistic approximation
will be studied first. Subsequently magnetic effects are discussed in a ‘semi-
relativistic’ theory, which goes one step beyond the non-relativistic treat-
ment. The completely covariant extension of quantum theory will be con-
fined to the discussion of the motion of single particles with and without
spin in slowly varying external fields. The covariant generalization to statis-
tical assemblies of particles moving in each other’s fields would require
quantization of the electromagnetic field together with its sources: this forms
the subject of quantum electrodynamics not dealt with here.

- The subject matter of the various chapters is, roughly spoken, of two kinds.
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Part is meant especially to serve as textbook material for graduate stu-
dents who take courses in electromagnetic theory By reading the first two
chapters they will get acquainted with the way in which the macroscopic
laws of electrodynamics are obtained from a microscopic basis, albeit in the
framework of classical, non-relativistic theory. In the relativistic part the
third chapter may be useful-as an exposé of the covariant equations for
fields and particles with the inclusion of the effects of radiation damping,
while the final results of the fourth and fifth chapters give an idea of the
way in which the non-relativistic laws may be generalized. Similarly the re-
sults of chapters VI and VII show the consequences of the use of quantum
mechanics. The special formulation of quantum mechanics in terms of Weyl
transforms and Wigner functions can be studied independently from the
appendix of chapter VI.

More advanced students w1ll be interested in the covariant formulation
of the equations of motion for composite Pparticles in chapter IV, relativistic
statistics as discussed in chapter V, the covariant quantum-mechanical equa-
tions of motion for particles with spin 0 and 4 in chapter VIII, and in the
semi-relativistic treatment of magnetic effects given in chapters IX and X.

~We are greatly indebted to Miss A. Kitselar, and Messrs. A.J. Kox and
M.A.J. Michels for their help in preparing the manuscript.

S.R.deG.
~ Amsterdam 1971 ' - L.G.S.
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CHAPTER I

Particles:
their fields and motion

1 Introduction

The aim of this chapter is to obtain a description of the electromagnetic
behaviour of composite particles in the framework of classical, non-rela-
tivistic theory. Such composite particles, like atoms, molecules or ions are
supposed to consist of charged point particles: the electrons and nuclei. The
equations which govern their motion and describe their fields will be derived
from the corresponding basic equations valid for charged point particles
without structure. The latter microscopic equations are the Maxwell-Lorentz
field equations and the Newton equation with the Lorentz force inserted.
A series expansion in terms of multipoles leads then to the field equations
and the momentum, energy and angular momentum equations for the
composite particles.

2 The microscopic field equations

The electric and magnetic fields e(R, ¢) and b(R, ¢) at the point with coor-
dinates R and at time ¢, generated by a collection of point particles i =
1,2,... with charges e,, positions R,(f) and velocities R,(f), satisfy the
Maxwell-Lorentz field equations (in the rationalized Gauss system')

Ve=Y .e,é(R,—R),

—0oe+VAb=c""'Y e R,6(R,—R),
. i
Vb = 0, ()
dob+VAae=0,

! In the Giorsi system different numerical coefficients appear: the factors ¢=* (both ex-
plicitly and in 3, are absent, while in the first two equations e and b are replaced by ze
and ug 'b respectively.
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where ¥ and 0, are differentiations with respect to R and ¢t (with ¢ the speed
of light) and the dot and the symbol A scalar and vector products of
vectors. The sources contain the three-dimensional delta functions of R,—R.

In non-relativistic theory one is interested in solutions of these equations
up to order ¢~ . To find them it is convenient to introduce potentials, From
the third equation it follows that

b=Vnra (2)
with the vector potential a(R, r). Then with the fourth equation one has
€= - V(P"aoa, (3)

where ¢(R, 1) is the scalar potential. Insertion of these expressions into the
first two equations of (1) gives, if one omits terms in ¢~ 2

A¢+60V'a = - Z eié(Ri—R).

b

. . 4)
4a—V(Va+d,0) = —c™' Y &R 5(R,~R), (

where 4 = V-V is the Laplace operator. The potentials are not fixed in a
unique way by the relations (2) and (3). The same electromagnetic fields
are described by potentials @’ and ¢’ which are related to the original po-
tentials @ and ¢ by a gauge transformation

L@ = (P—ao'ps
)
@ =a+Vy

with an arbitrary function . This property is utilized to choose the poten-
tials in such a way that they satisfy

0o+ Va =0, (6)
the Lorentz condition. The reason for imposing this condition is that then
the equations (4) become two uncoupled Poisson equations for ¢ and a:

49 = — } e;3(R,~R),

da 0

]

—cbl Z ei Rla(Rl—R)’

where again a term of order ¢~ 2 has been dismissed. The solutions follow
from the property for the delta function:

4 lli = —dnd(r). @®)
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Using this property, one finds from (7) the non-relativistic potentials in the
Lorentz gauge:

©)
-1 e R,
a=c ) -
7 47|R,—R|
so that the non-relativistic fields (2) and (3) are
€ = €, € = -V i Ty
Z’ 4r7|R,— R!
. (10)
g ¢;R,
b=>b, by =¢"'¥a- Tt
i 4niR; - R|

These formulae show that the non-relativistic electric field is of order c°
(a term in ¢~ ! does not appear), while the non-relativistic magnetic field is
of order ¢™' (no term in ¢ arises). From the first line of (10) it follows
that e is irrotational. This is in agreement with the fourth field equation in
(1), since 8, b is of order ¢~ and hence has to be neglected in non-relativistic
theory. So strictly spoken one should write in a non-relativistic theory the
truncated equation VAe = 0 instead of the fourth field equation.

3 The equation of motion for a point particle

The equation of motion for a particlf with charge e, mass m, position
R (1), velocity R,(¢) and acceleration R,(t) in an external electromagnetic
field (E, B,) is:

o mR, = e(E(R,, )+c 'R, AB(R,, 1)}, (11)

where at the right-hand side the Lorentz force appears. The equation of
motion of one particle of a set labelled by the index i = 1,2, ..., N reads

m;R; = e;{e(R;, )+c 'R, Ab(R;, 0} (12)

where the total electric and magnetic fields are the sums of the exiernal
fields and the fields (10) generated by the other particles:

e(Ri, 1) = ) e(R;, )+E(R;,1),
i(Fi) (13)
b(R;, 1) = 3 b{R;, t)+B/R,, ).

Ji#h
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Since in thé equation of motion (12) the magnetic field is accompanied by a

factor ¢ ™!, one needs there as fields
¢
eR,)= - Vi—d  +E(R,, 1),
(R, 1) ,.(;) 4n|R,—R|| (14

bt(Rls t) = Be(Rh t)s

instead of the complete expressions (13) with (10).
The equations of motion (12) with (14) may be written in Hamiltonian
form

M _ g, OH_ _p (15)
) OR,
with the Hamiltonian
P? e P
HoYobs 5 it TeloR)-c T aR, 1), (16)
i 2m; 1,500 8n|R—R;| T m;

with @, and 4, potentials for the external fields. Fndeed insertion of (16)
into (15) leads to (12) with (14).

4 The equations for the fields due to composite particles

a. The atomic series expansion

Charged point particles (electrons and nuclei) are often grouped into stable
sets, like atoms, molecules or ions. (For convenience we shall sometimes
refer to such tomposite particles simply as ‘atoms’,) The starting point for
the derivation of the equations for the fields due to such atoms is the set of
microscopic field equations (1). It will be convenient in the present case to .
replace the numbering i of the point particles by a numbering k of the stable
Broups and i of their constituent particles. The position vector R, written
as R,; now, can be split into two parts:

Ru = R, +ry. (17)

Here R, is the position of some privileged point of the stable group k (e.g.
the nucleus of an atom or the centre of mass, etc.), while the r,, (i = 1, 2, ...)
are the internal coordinates, which specify the positions of the constituent
particles ki with respect to that of the privileged point of the stable group k.

The case will now be studied in which the solutions e and b of the field
equations can be considered as converging series expansions in |ry;|/|R,— R|.



