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The Entropy Conéept in Probability Theory

(Uspekhi Matematicheskikh Nauk, vol. VIII,'no. 3, 1953, pp. 3-20)

- In his article “On the Drawing of Maps” P.L. Chebyshev
beautifully expresses the nature of the relation between scien-
tific theory and practice (discussing the case of mathematics):
“The bringing together of theory and practice leads to the
most favorable results; not only does practice benefit, but the
sciences themselves develop under the,influence of practice, which
reveals new subjects for investigation and new aspects of
familiar subjects.” A striking example of the phenomenon
described by Chebyshev is afforded by the concept of entropy
in probability theory, a concept which has evolved in recent
years from the needs of practice. This concept first arose in
attempting to create a theoretical model for the transmission
of information of various kinds. In the beginning the concept
was introduced in intimate association with transmission ap-
paratus of'one kind or another; its general theoretical signi-

~ficance and properties, and the general nature of its application
to practice were only gradually realized. As of the present, a
unified exposition of the theory of entropy can be found only
in specialized articles and monographs dealing with the trans-
mission of information. Although the .study of entropy has
actually evolved into an important and interesting chapter of
the general theory of probability, a presentation of it in this
general theoretical setting has so far been lacking.
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This article represents a first attempt at such a presentation.
In writing it, I relied mainiy on Shannon’s paper “The Mathe-
matical Theory of Communication”.* However, Shannon’s
treatment is not always sufficiently complete and mathemati-
cally correct, so that besides having to free the theory from
practical details, in many instances I have amplified and changed
both the statement of definitions and the statement and proofs
of theorems. There is no doubt that in the years to come the -
study of entropy will become a permanent part of probability
theory; the work I have done seems to me to be a necessary
stage in the development of this study.

£1. Entropy of Finite Schemes

In probability theory a complete system of events A,, A,
---, A, means a set of events such that one and only one of
them must oceur at each trial (e.g., the appearance of 1, 2, 3,
4,5, or 6 points in throwing a die). In the case n—=2 we have
a simple alternative or pair of mutually exclusive events (e.g.,
the appearance of heads or tails in tossing a coin). If we are
given the events A, 4.,---, 4, of a complete system, togethe'r

with their probabilities p,, ps---, p, (P, 20, i}p[:.l), then we
i=1

say that we have a finite scheme

A:(AIAE'“A"\) (1)
Py Dar D)

In the case of a “true” die, designating the appearance of <
points by A, (1 £1i£6), we have the finite scheme

(Al A‘.: AB A4vA5 As)
1/6 1/6 1/6 1/6 1/6 1/6/ -

* C. E. Shannon, Bell System Technical Journal, 27, 379-423; 623-656 (1948).
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Every finite scheme describes a state of uncertainty. We
have an experiment, the outcome of which must be one of the
events A, A,,---, 4,, and we know only the probabilities of
these possible outcomes. It seems obvious that the amount of
uncertainty is different in different -schemes. Thus, in the two

simple alternatives

(03 02).  (ogo 00r)
0.5 0.5/ 0.99 0.01/,
the first obviously represents much more uncertainty than the
second; in the second case, the result of the experiment is

“glmost surely” A, while in the first case we naturally refrain
from making any predictions. The scheme

(63 07)
0.3 0.7
represents an amount of uncertainty intermediate between the
preceding two, ete.

For many applications it seems desirable to introduce a
quantity‘ which in a reasonable way measures the amount of

uncertainty associated with a given finite scheme. We shall
see that the quantity

H(p“~p2’. ) pn): - gpk lg D

can serve as a very suitable measure of the uncertainty of the
finite scheme (1); the logarithms are taken to an arbitrary but
fixed base, and we always take p, lg p,=0 if p,=0. We shall
call the quantity H(p,, ps,---, p.) the entropy of the finite
scheme (1), pursuing a physical analogy which there is no need
to go into here. We now convinee ourselves that this function
" actually has a number of properties which we might expect.
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of a reasonable measure of uncertainty of a finite scheme.

First of all, we see immediately that H(p,, p,,---, p,)=0, if
and only if one of the numbers p,, p.,--, p, is one and all the
others are zero. But this is just the case where the result of
the experiment can be predicted beforehand with complete
certainty, so that there is no uncertainty as_to its outcome.
In all other cases the entropy is positive.

Furthermore, for fixed » it is obvious that the scheme with
the most uncertainty is the one with equally likely outcomes,
ie, p,=1/n (k=1,2,---,n), and in fact the entropy assumes its
largest value for just these values of the variables p,. The
easiest way to see this is to use an .inequality which is valid
for any continuous convex function ¢(zx)

1 n h 1 n
o(2-31a) £ =5 pa),
n k-1 n k=1

where a,,a,,---,a, are any positive numbers. Setting a,=p,

and ¢(x)=xlg x, and bearing in mind that ipk:l, we find
[

-q)(l):llgl 4 lZ} . 1g p= —lH(pl, Doy** 5 Do)y
n n n n k=t n

whence

H(p,, ps,---m,)élgn:H(%,%,---,%), Q.E.D.

Suppose now we have two finite schemes

A:<‘4l A'.‘"'An>, B=<Bl B::“'Bm>,

pl pﬂ."pn ql qS"'Qm

and let these two schemes be (mutually) independent, i.e., the
probability =,, of the joint occurrence of the events A, and
B, is p,g. Then, the set of events A.B, (1Zk<m, 1£1<m),
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with probabilities m,, represents another finite scheme, which
we call the product of the schemes A and B and designate by

AB. Let H(A), H(B), and H(AB) be the corresponding entro-
pies of the schemes A, B, and AB. Then

H(AB)=H(A)+ H(B), (2)
for, in fact
—H(AB)=33 7 g Ty =331 p.0. (g Pi g )=
=>pnlgpndiet+3ale .31 pe=—H(A)—H(B).
We now turn to the case where the schemes A and B are
(mutually) dependent. We denote by g,, the probability that

the event B, of the scheme B occurs, given that the event A,
of the scheme A occurred, so that

=00 (1< ksn, 1£L1ZL m).
Then

—H(AB)=21> P4, (Ig P +1g Q)=
=2 .12 D, 2 g+ zkale Ig q-

Here \‘q“—l for any k, and the sum —Zq,,lg q.. can be
~ regarded as the conditional entropy H./(B) of the scheme B,

calculated on the assumption that the event A, of the scheme
A occurred. We obtain '

H(AB)=H(A)+3 p.H(B).

The conditional entropy H,(B) is obviously a random variable
in the scheme A; its value is completely determined by the
knowledge of which event A, of the scheme A actually occurred.

Therefore, the last term of the right side is the mathematical
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expectation of the quantity H(B) in the scheme A, which we
shall designate by H,(B). Thus in the most general case, we

have
H(AB)=H(A)+H ,(B). (3)

It is self-evident that the relation (3) reduces to (2) .in the
special case where the schemes A and B are independent.

[t is also interesting to note that in all cases H,(B) < H(B).
It is reasonable to interpret this inequality as saying that, on
the average, knowledge of the outcome of the scheme A can
only decrease the uncertainty of the scheme B. To prove this,

we observe that any continuous convex function f(x) obeys
the inequality*

DI CARN (O
if 2,20 and >72,=1. Therefore, setting f(z)=zlg z,
k
4= Pu» e =qy, we find for arbitrary ! that
; Pl 1 Q> (%.‘ P:9:) g (LZ‘ P:4:.)=91gq,

since obviously >)p.g,,=¢,. Summing over [, we obtain on the
k

left side the quantity
2P 219 18 4= —21p.H(B)= —H,(B),
and consequently we find
—H,(B)>2,q,1g¢,=—H(B), QED.

If we carry out an experiment the possible outcomes of which
are described by the given scheme A4, then in doing so we

obtain some information (i.e., we find out which of the events

* See, for example, Hardy, Littlewood, and Pélya, Inequulities, Cambridge University
Press, 1934, v
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A, actually occurs), and the uncertainty of the scheme is
completely eliminated. Thus, we can say that the information
given us by carrying out some experiment consists in removing
the uncertainty which existed before the experiment. The
larger this uncertainty, the larger we consider to be the amount
of information obtained by removing it. Since we agreed to
measure the uncertainty of a finite scheme A by its entropy
H(A), it is natural to express the amount of information given
by removing this uncertainty by an increasing function of the
quantity H(A). The choice of this function means the choice
of some unit for the quantity of information and is therefore
fundamentally a matter of indifference. However, the proper-
ties of entropy which we demonstrated above show that it is
especially convenient to take this quantity of information pro-
portional to the entropy. Indeed, consider two finite schemes
A and B and their produet AB. Realization of the scheme AB
is obviously equivalent to realization of both of the schemes A
and B. Therefore, if the two schemes A and B are independent,
it is natural to require the information given by the realization
of the scheme AB to be the sum of the two amounts of in-
formation given by the realization of the schemes A and B;
since in this case

H(AB)=H(A)+H(B),

this requirement will actually be met, if we consider the amount
of information given by the realization of a finite scheme to
be proportional to the entropy of the scheme. Of course, the
constant of proportionality can be taken as unity, since this
choice corresponds merely to a choice of units. Thus, in all

that follows, we can consider the amount of information given
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by the realization of a finite scheme to be equal to the entropy
of the scheme. This stipulation makes the concept of entropy
especially significant for information theory.

In view of this stipulation, let us consider the case of two
dependent schemes A and B and the corresponding relation (3).
The amount of information given by the realization of the
scheme AB is equal to H(AB). However, as explained above,
in the general case, this cannot be equal to H(A)+H(B).
Indeed, consider the extreme case where knowledge of the
outcome of the scheme A also determines with certainty the
outcome of the scheme B, so that each event A, of the scheme
A can occur only in conjunction with a specific event B, of
the scheme B. Then, after realization of the scheme A4, the »

‘scheme B completely loses its uncertainty, and we have H,(B)=0;

moreover, in this case realization of the scheme B obviously
gives no further information, and we have H(AB)=H(A), so
that relation (8) is indeed satisfied. In all cases, the quantity
H,(B) introduced above is the amount of information given by
the scheme B, given that the event A, occurred in the scheme
A; therefore the quantity HA(B):Z p.H(B) is the mathe-
matical expectation of the amount kof additional information
given by realization of the scheme B after realizationA of
scheme A and reception of the corresponding information.
Therefore, the reldtion (3) has the following very reasonable
interpretation: The amount of information given by the reali-
zation of the two finite schemes A and B, eguals the amount of
information given by the realization of scheme A, plus the
mathematical expectation of the amount of additional informa-
tion given by the realization of scheme B after the realization

of the scheme A. In just the same way we can give an
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entirely reasonable interpretation of the general inequality
H (B) < H(B) proved above: The amount of in Jformation given
by the realization of a scheme B can only decrease if another
scheme A s realized beforehand.

£2. The Uniqueness Theorem

Among the properties of entropy which we have proved,
we can consider the following two as basic:

1. For given n and for i‘pkzl, the function H(p,, .-+, ,)
k-1
takes its largest value for p = 1 k=1,2,.---,n).
n

2. H(AB)=H(A)+H,(B).
We add to these two properties a third, which obviously must

be satisfied by any reasonable definition of entropy. Since the
schemes

(Al A,--- A, and (A1 A,--- A, A,”l)
Dy D2--- D, Py Ps--- P, 0/
are obviously not substantively different, we must have

3. H(p, p;,- ©y 00 O=H(p, ps,- -+, »,). (Adding the impos-
sible event or any number of impossible events to a scheme
does not change its entropy.) We now prove the following
important proposition:
Theorem 1.

Let H(py, pay+ -+, p,) be a function defined for any integer

n and for all values py, ps,- - -, p, such that p, >0 (k=1,2,..-, n),
Li}m: 1. If for any n this function is continuous with respect

to all its arguments, and if it has the properties 1, 2, and 3,
then

H(p,, poy- -+, p,)= —Z;:lpk Ig py,
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where A 1s a positive constant.

This theorem shows that the expression for the entropy of
a finite scheme which we have chosen is the only one possible
if we want it to have certain general properties which seem
necessary in view of the actual meaning of the concept of
entropy (as a measure of uncertainty or as an amount of
information).

Proof.

For brevity we set

H(i ?lz . %):L(fn);

we shall show that L(n)=alg n, where 1 1is a positive constant.
By 3 and 1, we have

Lin)= H(“ ' % 0> H(nil nJlrl njlg1>=L(n+1)’

so that L(n) is a non-decreasing function of m. Let m and r
be positive integers. Consider m mutually independent finite

schemes S,, S.,---,S,, each of which contains r equally likely
events, so that

H(Sk):H(;l_—, % .. %):L(r) (1 2k 2m).

By Property 2 (generalized to the case of m schemes) we have,
in view of the independence of the schemes S,

H(S:8,- - 8,)= 3} H(S) =mL(r).

But the product scheme S,S,-.-S, obviously consists of »"

equally likely events, so that its entropy is L(r™). Therefore
we have
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L(r™)=mL(r), (4)

and similarly, for any other pair of positive integers » and s

L(s*y=nL(s). (8)

Now let the numbers 7, s, and n be given arbitrarily, but
let the number m be determined by the inequalities

Trnésn‘,’.nhrl’ (6)

whence
mlgrZnlgs<(m+1)Igr,
m_ lgs m, 1 0
n lgr n n
It follows from (6) by the monotonicity of the function L(n)
that
L(r") £ L(s") £ Lr"*"),
and, consequently, by (4) and (5)
mL(r) £ nL(s) £ (m-+1)L(r),

so that
L(s) Lm-{-—l_. (8)

Finally, it follows from (7) and (8) that

L(s) lgs 4 1

IL(r) lgri n
Since the left side of this inequality is independent of m, and
since n can be chosen arbitrarily large in the right side

Lis) _ L(r)
lgs lgr’
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which, in view of the arbitrariness of r and s, means that
Liny=21g n,

where 2 is a constant. By the monotonicity of the function
L{n), we have 120, and our assertion is proved.

This assertion represents the special case p,.=1/n (1 Lk <Zn)
of the theorem to be proved. We now consider the more

general case, where the p, (k=12,--.,n) are any rational
numbers. Let

p=2% (k=12,--.,m),
g

where all the g, are positive integers and i‘lgkzg. Let the

k=1
finite scheme A consist of = events with probabilities p,, 0., - -, P,

Our problem consists in defining the entropy of this scheme.
To this end, we consider a second scheme B, which is dependent
on A and is defined as follows: The scheme B contains g
events By, B,,---, B,, which we devide into n groups, contain-
ing g, gs -+, 9, events, respectively. If the event A, occurred
in scheme A, then in scheme B all the g, events of the k’th
group have the same probability 1/g,, and all the events of
the other groups have probability zero (are impossible). Thus,
given any outcome A, of the scheme A, the scheme B reduces

to a system of g, equally likely events, so that the conditional
entropy

HL(B)=H(1/gU 1/g4-++,1/g)=L(g,)=41g g,
which means that |
H(B)= 3 n.H(B)=13p.lgg.=13}p lg ni+algg.  (9)

We return now to the product scheme AB, consisting of the
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events A.B, (1<k<n, 1£129). ‘Such an event is possible
only if B, belongs to the k’th group. Thus, the number of
possible eventé A,B, for a given k is g,, and the total number
of possible events in the scheme ABis‘i‘,gh: g. The probability
of each possible event A, B, is obv»iousl;-lph./gk:llg, ie., is the

same for all the events. Thus, the scheme AB consists of ¢
equally likely events, and therefore

H(AB)=L{g)=211g g.

Using property (2) and relation (9), we find

2lg g;H(A)H;ilm lg p,+2lg g,

whence

H(A)= H(p,, ps,"‘ypn):_l;j‘pklg Py (10)

Finally, relation (10) which we have proved for rational

Py Poye - *» P,y must be valid for any values of its arguments

because of the postulated continuity of the function H(p,, p.,
-+, »,). Thus the proof of Theorem 1 is complete.

£3. Entropy of Markov chains .
‘Suppose we have a simple stationary Markov chain with
a finite number of states A,, 4.,---, A, and with the transition

probability matrix p,, (4, k=12,---,n). We denote by P, the
probability of the state 4, (1 £k .<n), so that in particular

S Pp,=P, (=12, --,n) (11)
k=i
"If the system is in state A4,, then its transitions to the dif-
ferent states A, (k=1,2,.--,n) form a finite scheme
(Ar Ae ot Au\)
P P o0 Pu
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the entropy of which

H= _‘Zl Pulg D

depends on i and can be regarded as a measure of the amount
of information obtained when the Markov chain oves one step
ahead, starting from the initial state A,. The average of this

quantity over all initial states, i.e., the quantity

H:,Z'F P,-H,:—ggP,pu. lg p.,
is therefore to be regarded as a measure of the average amount
of information obtained when the given Markov chain moves
one step ahead. This quantity H, which we shall call the
entropy of the chain in question obviously characterizes the
chain as a whole; it i'sr_clear that it is uniquely determined by
giving the state probabilities P, and the transition probabilities

P 1LrLn, 1Lk Zn).

-~ All the coneepts which are defined for moving one step ahead
can be easily and naturally generalized to the case of moving
ahead an arbitrary number of steps r. If the system is In
state A,, then it is easy to calculate the probability that in
the next r trials we shall find it in the states A, A A
in turn, where k,, k.,---, k, are arbitrary numbers from 1 to n.
Thus, the subsequent fate of a system initially in the state A,
in the next r trials is described by a finite scheme (with =’
events), with a definite entropy which we designate by H,’
and regard as a measure of the amount of i\nformation obtained
in moving ahead r steps in the chain, starting from the initial
state 4,. The quantity

n
le): X P[H;_('r,\
i1



