

Graphical Models: Foundations of Neural Computation

Edited by Michael I. Jordan and Terrence J. Sejnowski

A Bradford Book

The MIT Press
Cambridge, Massachusetts
London, England

© 2001 Massachusetts Institute of Technology

Allrights reserved. No part of this book may be reproduced in any form by any electronic
or mechanical means (including photocopying, recording, or information storage and
retrieval) without permission in writing from the publisher.

This book was set in Palatino and printed and bound in the United States of America.
Library of Congress Cataloging-in-Publication Data

Graphical models : foundations of neural computation / edited by Michael 1. Jordan
and Terrence J. Sejnowski.
. cm. — (A Bradford book) (Computational neuroscience)

ISBN 0-262-60042-0 (pbk. : alk. paper)

1. Neural networks (Computer science) 2. Computer graphics. I Jordan, Michael
Irwin, 1956~ II. Sejnowski, Terrence J. (Terrence Joseph) III. Series. IV. Bradford book
QA76.87 .G72 2001
006.3'2—dc21

2001030212

T ———

Computational Neuroscience

Terrence J. Sejnowski and Tomaso A. Poggio, editors

Neural Nets in Electric Fish, Walter Heiligenberg, 1991

The Computational Brain, Patricia S. Churchland and Terrence J. Sejnowski,
1992

Dynamic Biological Networks: The Stomatogastric Nervous System, edited by
Ronald M. Harris-Warrick, Eve Marder, Allen I. Selverston, and Maurice
Moulins, 1992

The Neurobiology of Neural Networks, edited by Daniel Gardner, 1993

Large-Scale Neuronal Theories of the Brain, edited by Christof Koch and Joel L.
Davis, 1994

The Theoretical Foundation of Dendritic Function: Selected Papers of Wilfrid Rall
with Commentaries, edited by Idan Segev, John Rinzel, and Gordon M.
Shepherd, 1995

Models of Information Processing in the Basal Ganglia, edited by James C.
Houk, Joel L. Davis, and David G. Beiser, 1995

Spikes: Exploring the Neural Code, Fred Rieke, David Warland, Rob de Ruyter
van Steveninck, and William Bialek, 1997

Neurons, Networks, and Motor Behavior, edited by Paul S. G. Stein, Sten
Grillner, Allen I. Selverston, and Douglas G. Stuart, 1997

Methods in Neuronal Modeling: From lons to Networks, second edition, edited
by Christof Koch and Idan Segev, 1998

Fundamentals of Neural Network Modeling: Neuropsychology and Cognitive
Neuroscience, edited by Randolph W. Parks, Daniel S. Levine, and Debra L.
Long, 1998

Neural Codes and Distributed Representations: Foundations of Neural Computation,
edited by Laurence Abbott and Terrence J. Sejnowski, 1997

Unsupervised Learning: Foundations of Neural Computation, edited by Geoffrey
Hinton and Terrence J. Sejnowski, 1997

Fast Oscillations in Cortical Circuits, Roger D. Traub, John G. R. Jefferys, and
Miles A. Whittington, 1999

Computational Vision: Information Processing in Perception and Visual Behavior,
Hanspeter A. Mallot, 2000

Graphical Models: Foundations of Neural Computation, edited by Michael I.
Jordan and Terrence J. Sejnowski, 2001

Self-Organizing Map Formation: Foundations of Neural Computation, edited by
Klaus Obermayer and Terrence J. Sejnowski, 2001

Series Foreword

Computational neuroscience is an approach to understanding the infor-
mation content of neural signals by modeling the nervous system at
many different structural scales, including the biophysical, the circuit,
and the systems levels. Computer simulations of neurons and neural
networks are complementary to traditional techniques in neuroscience.
This book series welcomes contributions that link theoretical studies
with experimental approaches to understanding information processing
in the nervous system. Areas and topics of particular interest include
biophysical mechanisms for computation in neurons, computer simu-
lations of neural circuits, models of learning, representation of sensory
information in neural networks, systems models of sensory-motor inte-
gration, and computational analysis of problems in biological sensing,
motor control, and perception.

Terrence J. Sejnowski
Tomaso A. Poggio

Sources

Smyth, P., Heckerman, D., and Jordan, M. 1. 1997. Probabilistic independence
networks for hidden Markov probability models. Neural Computation 9(2),
227-269.

Hinton, G. E., and Sejnowski, T. J. 1986. Learning and relearning in Boltzmann
machines. In Parallel Distributed Processing: Explorations in the Microstructure of
Cognition, Volume 1: Foundations, D. E. Rumelhart and J. L. McClelland, eds.,
pp. 282-317. MIT Press, Cambridge.

Saul, L., and Jordan, M. 1. 1994. Learning in Boltzmann trees. Neural Computation
6(6), 1174-1184.

Hinton, G. E. 1989. Deterministic Boltzmann learning performs steepest descent
in weight-space. Neural Computation 1(1), 142-150.

Saul, L. K., and Jordan, M. 1. 2000. Attractor dynamics in feedforward neural
networks. Neural Computation 12(6), 1313~1335.

Kappen, H. J., and F. B. Rodriguez. 1998. Efficient learning in Boltzmann
machines using linear response theory. Neural Computation 10(5), 1137-1156.

Neal, R. 1992. Asymmetric parallel Boltzmann machines are belief networks.
Neural Computation 4(6), 832-834.

Frey, B. J., and Hinton, G. E. 1999. Variational learning in nonlinear Gaussian
belief networks. Neural Computation 11(1), 193-213.

Tipping, M. E., and Bishop, C. M. 1999. Mixtures of probabilistic principal com-
ponent analyzers. Neural Computation 11(2), 443-482.

Attias, H. 1999. Independent factor analysis. Neural Computation 11(4), 803~851.

Jordan, M. I, and Jacobs, R. A. 1994. Hierarchical mixtures of experts and the EM
algorithm. Neural Computation 6(2), 181-214.

Krogh, A., and Riis, S. K. 1999. Hidden neural networks. Neural Computation
11(2), 541-563.

Ghahramani, Z., and Hinton, G. E. 2000. Variational learning for switching state-
space models. Neural Computation 12(4), 831-864.

Tresp, V., and Hofmann, R. 1998. Nonlinear time-series prediction with missing
and noisy data. Neural Computation 10(3), 731-747.

Weiss, Y. 2000. Correctness of local probability propagation in graphical models
with loops. Neural Computation 12(1), 1-41.

Introduction

A “graphical model” is a type of probabilistic network that has roots in
several different research communities, including artificial intelligence
(Pearl 1988), statistics (Lauritzen 1996), and neural networks (Hertz,
Krogh, and Palmer 1991). The graphical models framework provides a
clean mathematical formalism that has made it possible to understand
the relationships among a wide variety of network-based approaches to
computation and, in particular, to understand many neural network
algorithms and architectures as instances of a broader probabilistic
methodology. Moreover, this formal framework has made it possible
to identify those features of neural network algorithms and architec-
tures that are novel and to extend them to other more general graphical
models. This interplay between the general formal framework of graph-
ical models and the exploration of new algorithms and architectures is
exemplified in the chapters included in this volume. These chapters,
chosen from Neural Computation, include many foundational papers of
historical importance as well as papers that are at the research frontier.
The volume is intended for a broad range of students, researchers, and
practitioners who are interested in understanding the basic principles
underlying graphical models and in applying them to practical problems.

Probabilistic and information-theoretic approaches have become
dominant in the neural network literature, as researchers have attempted
to formalize “adaptivity” in neural computation and understand why
some adaptive methods perform better than others. The probabilistic
framework has also provided a guide in the exploration of new algo-
rithms and architectures. At the same time, the notion of “locality” has
continued to exert a key constraint on neural network research, restrict-
ing the kinds of architectures and algorithms that are studied. The par-
ticular relevance of graphical models to this research effort is that the
graphical models framework provides formal definitions of both adap-
tivity and locality. It does so by forging a mathematical link between
probability theory and graph theory.

Graphical models use graphs to represent and manipulate joint prob-
ability distributions. The graph underlying a graphical model may be
directed, in which case the model is often referred to as a belief network or
a Bayesian network, or the graph may be undirected, in which case the
model is generally referred to as a Markov random field. A graphical
model has both a structural component—encoded by the pattern of
edges in the graph—and a parametric component—encoded by numer-
ical “potentials” associated with sets of edges in the graph. The relation-
ship between these components underlies the computational machinery
associated with graphical models. In particular, general inference algo-
rithms allow statistical quantities (such as likelihoods and conditional
probabilities) and information-theoretic quantities (such as mutual infor-

xii Introduction

mation and conditional entropies) to be computed efficiently. Learning
algorithms build on these inference algorithms and allow parameters and
structures to be estimated from data. All of these probabilistic computa-
tions make use of data structures associated with the graph—in partic-
ular, an important data structure known as a junction tree (see chapter 1).
The junction tree groups nodes into clusters and defines probabilistic
“messages” that pass among the clusters; this essentially amounts to a
graph-theoretic characterization of computational “locality” for general
probabilistic inference.

Many neural network architectures, including essentially all of the
models developed under the rubric of “unsupervised learning” (Hinton
and Sejnowski 1999) as well as supervised Boltzmann machines, mix-
tures of experts, and normalized radial basis function networks, are
special cases of the graphical model formalism, both architecturally and
algorithmically. Many other neural networks, including the classical
multilayer perceptron, can be profitably analyzed from the point of view
of graphical models.

The graphical model literature in Al and statistics has contributed the
general formalism for understanding relationships between graphs and
probabilities; the neural network literature has contributed a rather
far-flung exploration in the space of architectures and algorithms. This
exploration is the principal subject matter of this book. Before turning to
specific examples, let us give a brief overview of some of the general
themes that have characterized this exploration.

Classical graphical model architectures in AI have often used localist
representations, in which a single node represents a complex concept,
such as “chair.” Neural network researchers, on the other hand, have
explored distributed or factorial representations in which single nodes
represent simpler properties that are broadly tuned and overlapping.
This has allowed much larger problems to be tackled. Also, the graphical
model literature has generally focused on exact probabilistic inference or
sampling-based inference methods, whereas neural network research
has studied a wider class of approximate inference methods. For exam-
ple, the mean-field, or variational, methodology developed first for the
Boltzmann machine and related undirected models, has flowed into
the general graphical formalism and yielded fast new algorithms for
approximate probabilistic inference. Finally, the neural network liter-
ature has delved deeply into nonlinear classification and regression,
contributing a variety of new methods for parameter estimation and
regularization in graphical models, with a particular focus on “on-line
algorithms” (which can be viewed as defining another, temporal, notion
of “locality”). In general, the bi-directional flow of ideas between these
two fields has led to a significantly broader understanding of network-
based computation. This understanding is reflected and pursued in the
following chapters.

Readers new to the topic of graphical models should start with the
first three sections of the chapter by Smyth, Heckerman, and Jordan

Introduction xiii

(chapter 1), which provide a short overview. A full presentation can be
found in any of several recent textbooks (e.g., Cowell et al. 1999). See
also Jordan (1999) for several tutorial articles that provide basic back-
ground for the chapters presented here.

The Boltzmann Machine

The Boltzmann machine (chapter 2) is a probabilistic network of binary
nodes. Historically, the Boltzmann machine played an important role in
the development of the neural network field, as the first general multi-
layer architecture to employ hidden units between the input and output
nodes. As we discuss in this section, the Boltzmann machine is a special
case of an undirected graphical model, or Markov random field (MRF).
The inference and learning algorithms for Boltzmann machines, and in
particular the treatment of hidden units, exemplify more general solu-
tions to the problem of inference and learning in graphical models with
latent variables.

While general MRF’s represent joint probability distributions as
products of arbitrary local functions (“potentials”) on the cliques of the
graph,! the Boltzmann machine adopts a restricted par:imeterization in
which the potentials are formed from pairwise factors. These pairwise
factors take the form exp{];S:S;}, where Jij is the weight on the edge
between unit i and j, and S; and S; are the (binary) values of units i
and j, respectively. (In a general MRF, higher-order interactions such
as [;xS;S;Sy would be included—when the nodes S;, S;, and S are in a
clique, namely, are mutually interconnected). Taking products of these
local potentials yields the total potential exp{3,;J;S:S;}, which, when
normalized, defines a Boltzmann distribution:

¢ES)
Z

for a quadratic energy function E(S) -4 = icj J§5iSj. From this joint
probability distribution, we can define arbitrary conditional probabilities
of one set of nodes given another set of nodes. Calculating these condi-
tionals defines the inference problem for Boltzmann machines.

For general Boltzmann machines, in particular for the fully connected
Boltzmann machines that have generally been studied in the literature,
there are no structural properties (conditional independencies) to take
advantage of, and the inference problem is intractable. Approximate
inference techniques have generally been employed—in particular, sto-
chastic sampling (Gibbs sampling) enhanced with simulated annealing.
Although these methods do provide a way to study the Boltzmann

P(S) = 1)

1A clique is a fully connected subgraph. A clique consisting of 7 binary nodes can be
in one of 2" configurations, where a configuration is an assignment of a binary value to
each node in the clique. A potential is a function that assigns a nonnegative real number
to each configuration.

xiv Introduction
machine empirically, they are slow and are generally viewed as complex
(particularly when used in the setting of learning algorithms, where
multiple simulated annealing passes are required). Historically, when
the multilayer perceptron became popular, Boltzmann machines lost
their luster.

The fact that the worst-case, fully connected Boltzmann machine
presents no opportunities for fast inference does not imply that Boltz-
mann machines in general present no such opportunities. This point
of view was emphasized by Saul and Jordan (chapter 3), who studied
Boltzmann machines in which the hidden units form a tree. They
showed that in such architectures it is not necessary to resort to Gibbs
sampling to solve the inference problem; rather, a simple deterministic
recursion known as decimation can be employed to calculate the condi-
tional probabilities. The time required for the computation is propor-
tional to the width of the graph. These are Boltzmann machines that can
be “solved.”

The decimation rule can be generalized beyond the pairwise inter-
actions that characterize the classical Boltzmann machine, yielding an
exact calculation method for general MRFs. Interestingly, this rule is a
special case of the junction tree methodology that has been developed
for inference in arbitrary graphical models (Cowell et al. 1999). There
appears to be no particular advantage to the decimation approach, and
indeed the junction tree approach has the advantage of providing an
explicit method for estimating the time complexity of inference—the time
complexity is exponential in the size of the largest clique in the triangu-
lated graph of the network. Thus it is possible to identify systematically
the classes of Boltzmann machines for which exact inference is efficient.

Mean Field Approximation

In 1987, Peterson and Anderson (1987) presented an alternative approach
to inference for the Boltzmann machine that has had substantial impact.
Their approach was based on an approximation known in physics as
the “mean field” approximation. Under this approximation, the (ap-
proximate} mean value of the conditional probability distribution at
each node is written as a function of the (approximate) mean values of
its neighbors, and a so-called self-consistent set of mean values is
obtained by iteratively evaluating these functions. For the Boltzmann
machine, these iterative equations turn out to take a simple classical
form in which each node’s value is the logistic function of a weighted
sum of its neighbors’ values. These are the standard nonlinear equations
proposed by Hopfield (1984) for the “continuous Hopfield network,”
and they can be shown—via Lyapunov theory—to be locally convergent
(Cohen and Grossberg 1983; Hopfield 1984).

Peterson and Anderson’s idea has been taken in two somewhat dif-
ferent directions. One line of research has focused on optimization
problems, where the mean field approach has given rise to a general

Introduction XV

methodology known as deterministic annealing (Yuille and Kosowsky
1994). In deterministic annealing, the focus is on the energy function
rather than the distribution that it defines; in particular, the goal is to
find the minima of the energy function. (The probabilistic framework
serves the subsidiary role of smoothing the energy function.) The mean
field equations are generally derived from the point of view of saddle
point approximation, which gives rise to a free “temperature” parameter
that controls the degree of smoothing. In a procedure reminiscent of in-
terior point methods, the mean field equations are solved for a gradually
decreasing set of temperatures. It is possible to relate the limiting solu-
tion of these equations (as the temperature goes to zero) to the minima of
the energy function (Elfadel 1995).

In a second branch of research, the focus has been on mean field
theory as a methodology for approximation probabilistic inference in
general graphical models. Here the emphasis has been on extending the
basic approach to a wider class of architectures and on developing more
refined versions of the approximation. A different point of view has
proved to be fruitful in which the mean field approximation is viewed as
the expression of a variational principle. Given a distribution P(S) that is
costly to calculate, approximate P(S) by choosing a distribution Q(S|u)
from a family of approximating distributions, where the variational pa-
rameter y indexes the family. The variational parameter is chosen so as to
minimize the Kullback-Leibler (KL) divergence between Q and P:

u* = argmin { > (sl in o) }

{s}

where the sum is taken over all configurations of S (assumed discrete for
simplicity).

When Q(S|y) is taken to be the completely factorized distribution,
namely, Q(S) =[], Q(Sil#;), and when P(S) is the Boltzmann distribu-
tion in equation (1), then one obtains the mean field equations of Peter-
son and Anderson. That is, the Peterson and Anderson equations arise
by taking the derivative of the KL divergence with respect to ; and set-
ting to zero.

Saul and Jordan (1996) observed that a wider class of approximations
could be obtained by choosing a wider class of approximating distribu-
tions Q(S|y). Note that a completely factorized Q(S|u) corresponds to a
subgraph of the original graphical model in which all edges are omitted.
By considering subgraphs that retain some of the edges of the original
graph, while maintaining tractability by restricting the subgraph to be
a sparse graph (such as a chain or a tree), more refined variational
approximations can be obtained. Moreover, in minimizing the KL diver-
gence for such approximations, it is necessary to solve the inference
problem for the tractable subgraph. Thus exact inference algorithms
(such as the junction tree algorithm) become subroutines within an
overall variational approximation. Several of the chapters included in
the collection reflect this point of view.

T i\ om0 i e

xvi Introduction

There are other refinements to mean field theory that have been
studied in the context of graphical models. Kappen and Rodriguez
(chapter 6) studied the linear response correction (Parisi 1988) to the naive
mean field approximation, which provides an improved approximation
to the second-order statistics. Applying this correction to mean field
equations for the Boltzmann machine, they found significant improve-
ments in inferential accuracy.

Thus far we have focused on inference, but an equally important
problem is that of learning the parameters of the model. In the setting of
graphical models, the learning problem and the inference problem are
closely related and learning algorithms generally make use of inference
algorithms as an “inner loop.” In the context of the Boltzmann machine,
the classical approach is to use Gibbs sampling as an inner loop to obtain
the statistics that are needed for the gradient descent procedure (the
“outer loop”). There is, however, no reason to focus exclusively on sam-
pling methods. For tractable architectures, it is preferable to calculate the
necessary statistics exactly (using the junction tree algorithm). Alter-
natively, as shown by Hinton (chapter 4), the approximation provided
by the mean field approach provides an appropriate inner loop for a
gradient descent algorithm for learning. This idea has been taken further
by Neal and Hinton (1999), who develop a link between approximate
inference and approximate “E steps” for the EM algorithm. In general,
approximate inference algorithms can be used to increase a (tractable)
lower bound on an (intractable) likelihood.

Directed Graphical Models

Another point of contact between the neural network literature and the
graphical model literature was made by Neal (chapter 7; see also Neal
1992 for a fuller presentation). Neal observed that certain so-called
asymmetric Boltzmann machines are actually special cases of directed
graphical models, also known as belief networks or Bayesian networks.
Directed graphical models define their joint probabilities by taking
products of local conditional probabilities. In many ways this yields a
simpler entry point into the graphical model framework than the undi-
rected formalism of Boltzmann machines.

The general definition of a joint probability distribution for a directed
graphical model is given as follows:

P(S) =[] P(Silm),)

where 7; represents the set of parents of node S;. Note in particular that
there is no need for a normalizing constant Z in this approach to defining
the joint probability.

For the special case of binary S;, one interesting possibility is to take
P(Si|ni) to be the logistic function of a linear weighted sum of the parent
nodes. This yields a directed graphical model known as a sigmoid belief

Introduction xvii

network. As observed by Neal, a sigmoid belief network is a close cousin
of the multilayer perceptron. Neal proposed using Gibbs sampling as the
inferential engine for sigmoid belief networks, but, as in the case of the
Boltzmann machine, for certain architectures (e.g., trees) one can per-
form exact inference efficiently using the junction tree algorithm.

Saul, Jaakkola, and Jordan (1996) derived the analog of the Peterson
and Anderson mean field theory for sigmoid belief networks. The
directed nature of the graph yields additional terms in the mean field
equations that are not present in the undirected Boltzmann machine.
Saul and Jordan (chapter 5) took this approach further in the context of
large layered networks, where a central limit theorem expansion is jus-
tified. An interesting feature of their work is that the (approximate)
maximum likelihood learning algorithm that they derive includes
“weight-decay” terms that are familiar from statistically motivated reg-
ularization methods. Thus approximate inference based on a simplifying
variational distribution can be preferable to exact inference for the pur-
poses of parameter estimation.

Although most of the research on variational approximation algo-
rithms has been carried out for networks of discrete nodes, Frey and
Hinton (chapter 8) have developed variational algorithms for several
kinds of continuous nodes. The derivation presented in their chapter
includes piecewise linear nodes and nodes with continuous sigmoidal
nonlinearities.

Latent Variable Models

The Boltzmann machine, sigmoid belief networks, and mean field or
variational algorithms have provided a set of links to the graphical
models literature; another link has been provided by mixture models
and more general latent variable models. In the simplest cases these
models are handled via exact inference methods, but in more complex
cases the models shade into the layered graphical models discussed in
the previous section, where sampling or variational methods are gener-
ally required.

Mixture models provide a probabilistic setting for the development
of clustering algorithms, both unsupervised (Duda and Hart 1973;
Nowlan 1990) and supervised (Jacobs et al. 1991). Each data point is
assumed to be drawn from one of a fixed set of classes, but the class label
is assumed to be “missing” or “latent” and must be inferred from the
model.

As a graphical model, a classical mixture model for unsupervised
clustering has a particularly simple representation (see figure 1). The
unshaded (“hidden”) node represents the class label, w, and the shaded
node represents the observed data point y. The inference problem for
this graphical model is that of calculating the probability of the hidden
node given the observed node, namely, P(wly). The calculation of this
posterior probability is the “inner loop” in a procedure (the expectation-

xviii Introduction

Figure 1: The graphical model representation for a mixture model, where the
node labeled y represents an observed data point and the node labeled
o represents the (latent) class. The joint probability is given by P(w)P(y|w);
marginalizing over o yields a mixture.

maximization or “EM” algorithm) that estimates the parameters of the
model.

An alternative latent variable model is provided by factor analy-
sis (FA), where the underlying variable is a continuous rather than a
discrete vector. This model can also be represented as the two-node
graphical structure in figure 1 (although this representation hides the
independencies among the components of the vectors). The model is
parameterized by letting the latent variable be Gaussian with diagonal
covariance matrix, and by letting the observed variable be Gaussian with
a mean that is a linear function of the latent variable.

Factor analysis provides a technique for dimensionality reduction in
which the data are assumed to lie near a low-dimensional hyperplane.
A closely related model involving a probabilistic variant of principal
component analysis (PCA) has been developed by Roweis (1998) and
Tipping and Bishop (chapter 9); this model can also be represented as the
two-node graphical structure in figure 1.

A number of authors, including Ghahramani and Hinton (1998),
Hinton, Dayan, and Revow (1997), and Tipping and Bishop (chapter 9),
have studied mixtures of FA or PCA models. We have reprinted the
latter paper, which is representative of this line of research. The basic
model can be rendered as a graphical model as shown in figure 2. As in a
mixture model, the latent node w is a discrete node representing the
hidden class label. For each value of w, we obtain a FA or PCA model,
where the latent node y is a continuous node representing the FA or PCA
subspace. Under this model, data are assumed to form clusters, where
each cluster is represented as a lower-dimensional linear manifold.

Independent components analysis (ICA) is another latent variable
model with links to FA and PCA (Comon 1994; Bell and Sejnowski 1995).

Introduction Xix

Figure 2: A graphical representation of a mixture of FA or PCA models.

As in FA, a vector of observed values is assumed to arise as a linear
function of a continuous latent vector, and the components of the latent
vector are assumed to be mutually independent. Whereas in FA the
latent vector is assumed to be Gaussian, in ICA the latent vector is
assumed to have a more general probability density—in particular, one
for which the independence assumption has stronger consequences than
mere decorrelation. In a nonlinear generalization of ICA (Lee, Lewicki,
and Sejnowski 2000), mixtures of ICA can be used to both represent and
classify data. Attias (chapter 10) proposes another generalization in
which the latent density models are represented flexibly via mixture-
of-Gaussian densities. Conditional on the choices of mixture compo-
nents of these underlying densities, one has a FA model. The graphical
model is again a three-layer directed model with a discrete node repre-
senting the mixture components in the top level and continuous nodes
in the two lower levels. The exact inference algorithm for this model
scales exponentially in the number of components of the latent vec-
tor. To handle large models, Attias (chapter 10) develops a variational
approximation.

Finally, another line of research involving mixture models is the mix-
ture of experts architecture (Jacobs et al. 1991), which is a conditional
density model appropriate for supervised learning. In this model both
the “mixing proportion,” namely, P(w), and the “mixing components,”
namely, P(y|w), are conditioned on the input vector x. The mixture
model thus takes the form P(y|x) = " P(w|x)P(y|®,x). The condition-
ing allows the input space to be partitioned adaptively into a set of
regions (via the P(w|x) term) in which different regression or classifica-
tion surfaces are fit (the P(y|w,x) term).

XX Introduction

(@) (b)

Figure 3: (a) The graphical representation of a mixture of experts model. This is a
mixture model in which the distributions of the hidden variable w and the output
vector y are both conditioned on the input vector x. (b) The graphical model
representation of a three-level hierarchical mixture of experts model. This model
involves a sequence of hidden variables, w;, ®;, and wij, corresponding to a
probabilistic, nested partition of the input space.

The mixture of experts is shown as a graphical model in figure 3(a).
Here we see the conditional dependence of both the discrete latent vari-
able and the observable y on the input vector. Note that both the input
vector and the output vector are observed (shaded).

Jordan and Jacobs (chapter 11) generalized the mixture of experts to a
hierarchical architecture (the hierarchical mixture of experts, or “HME”), in
which a sequence of latent decisions are made, each of which is condi-
tional on the input vector x and the previous decisions. The correspond-
ing graphical model is shown in figure 3(b). Geometrically, the HME
corresponds to-a nested partitioning of the input space (the HME is
essentially a probabilistic decision tree).

Jordan and Jacobs also proposed using the EM algorithm to fit the
parameters of mixture-of-experts architectures. For the HME, the inner
loop of this algorithm involves a recursive pass upward in the tree to
compute the posterior probabilities of the latent decision nodes (condi-
tioned on both x and y). As should be expected from figure 3(b), this

Introduction xxi

i;A A
nq\‘/ﬁ e o o qr

Figure 4: A hidden Markov model represented as a graphical model. Each hor-
izontal slice corresponds to a time step and is isomorphic to the mixture model
shown in figure 1. The distribution 7 is the initial state distribution and A is the
state transition matrix. The output sequence (g, ¥, - - -, Yr) is observed and the state
sequence (4o, q1, - - - ,qr) is unobserved.

recursion is a special case of the general inference algorithms for graph-
ical models.

Dynamical Models

The hidden Markov model (HMM) is a paradigm example of a tractable
graphical model. As shown in figure 4, the HMM can be viewed as a
dynamical generalization of the basic mixture model in which the mix-
ture model is copied and there are additional edges joining the hidden
nodes. Each such node can be in one of M states, and there is an M x M
transition matrix parameterizing these edges. The inference problem is
that of calculating the probabilities of the hidden nodes given the entire
sequence of observed nodes. This problem is solved via a recursive
algorithm (the “alpha-beta algorithm”) that proceeds forward and back-
ward in the graph.

Smyth, Heckerman and Jordan (chapter 1) review the general graph-
ical model formalism, describing in particular the junction tree algorithm
for exact inference in graphical models. They then discuss HMMs,
deriving the alpha-beta algorithm from the point of view of the junction
tree framework. Several variants of the basic HMM architecture are also
presented.

The technique of copying a basic underlying graphical model and
linking nodes in the copies to obtain a Markovian dynamical model is
widespread (Dean and Kanazawa 1989). Pursuing this approach in the
case of factor analysis yields the classical linear-Gaussian Markov model,
much studied in systems theory (cf. Roweis and Ghahramani 1999). The
inference problem is solved by an analog of the forward-backward al-
gorithm in which the “forward” algorithm is the classical Kalman filter.
Both this forward recursion and any of a number of backward algo-

