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In some disciplines, the introductory courses survey fundamental concepts
and introduce subordinate disciplines. In other disciplines, the introduc-
tory courses teach fundamental skills essential for understanding the dis-
cipline. Computer science is one of the latter. Although computer science
is not the study of computer programming, you cannot study computer
science until you can understand moderately large programs.

With this in mind, the first year of an undergraduate computer science
education should be devoted to learning how to write programs in a high-
level language, as the Curriculum 78 Model of the Association for Computing
Machinery suggests. This first year is divided into two courses, C51 and CS2.
Program Design and Data Structures in Pascal is intended for use in the
second course, CS2, and its goal is to take students from being comfortable
with programs of 50 to 100 lines and three or four procedures to being
comfortable with programs of 500 lines and thirty or forty procedures.

Top-Down Design and Abstract Data Types

Novices have a strong desire to understand “what is really happening in a
computer,” yet computers are so complex that no one, no matter how expe-
rienced, can do this. Humans understand computers as layers of abstrac-
tion. We then focus our attention on one layer at a time. We understand how
one abstract layer uses the layer below it, and we understand the services
that layer provides to the layer above it. We then move our attention up and
down this hierarchy, understanding each layer in isolation. The only way to
learn this use of abstraction is by experience with it, and Program Design
and Data Structures in Pascal provides that experience.

Through numerous programming projects described using top-down
design, this book helps students learn to use layers of abstraction. Using
top-down design, the initial understanding of a problem is broken down
into smaller problems with structured programming. Solving the smaller
problems in the same fashion leads to a solution of the original problem.
Another key element in our design methodology is the use of bottom-up
design with abstract data types. An abstract data type is a widely useful
group of procedures and functions that collectively manipulate and exam-
ine some conceptual data object. In the portions of a program that use the
procedures and functions of an abstract data type, we are not concerned
with how the procedures and functions are implemented, only with what
can be done with them. In the portions of a program that implement the
procedures and functions of an abstract data type, we are not concerned
with how they are used, only with how to implement them.

Prevention of Logic Bugs

Professional programmers do not debug programs: they write programs that
do not have bugs. To back off from this extreme position somewhat: profes-
sional programmers do encounter bugs in their code, but these bugs are
typically trivial, easily identified, and easily corrected. To produce a correct
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program in five compilations is acceptable. To use fifty compilations is not
acceptable. The difficult bugs are the ones that occur at the design level, the
so-called logic bugs. These are the bugs that give students the most trouble,
and these are the bugs that good programmers don't introduce into their
code. This book will help students avoid these bugs because each design is
described in detail. If students read and understand the designs, they will
have no logic bugs. If, by the end of this textbook, students feel that pro-
ducing a good design is challenging and that coding a fully described design
in a programming language is trivial, then they will have learned what this
book has to teach.

Programming Projects

Every chapter contains programming projects. The design of the project in
Chapter 1 is completely described and then implemented so that students
can see what will be expected in later chapters. Starting in Chapter 2, every
chapter contains one or two major programming projects whose designs
are carefully described for students. Beginning in Chapter 4, there are also
programming projects that are not designed so students can exercise the
design skills they are developing through the course of the book. I usually
give students a week to do one of the predesigned projects and two weeks
for projects they must design. Thus, there is not enough time to debug a
program unless it is fundamentally correct when first written. This is crucial
in a computer science education; the ability to write large quantities of
source code correctly on the first try is not what computer science is, but
it is a prerequisite to being able to do computer science on a professional
level.

Organization

The complementary techniques of top-down design and bottom-up design
with abstract data types are used in programming projects through the
book, but Chapter 1 is concerned exclusively with these issues and intro-
duces them in the context of an interesting robot simulation. Then several
common abstract data types are introduced in Chapters 2 through 5. These
include input files, stacks, queues, tables, and character strings. When first
introduced, each is implemented as simply as possible using a static sequen-
tial memory allocation. These chapters emphasize the notion of an abstract
data type, its abstract specification, and the integrity of its interface. The
exercises in these chapters stress these topics, and the projects illustrate
typical uses of these common abstract data types in top-down designs.

in addition to introducing the table abstract data type, Chapter 4 intro-
duces the importance of time complexity by studying the binary search
algorithm. Besides introducing the character string abstract data type, Chap-
ter 5 introduces the importance of space complexity by studying the allo-
cation of variable-length strings in a global character heap.



In Chapters 6 through 10, the focus shifts to the importance of time and
space complexity. In Chapter 6, recursive programming is introduced, and
then, as an application, the Quicksort algorithm is studied inn depth. Chapter
7 introduces linearly linked allocations by providing an alternative imple-
mentation of the stack and queue abstract data types first studied in Chapter
3. Chapter 8 continues this study with a linearly linked allocation of the
table abstract data type first studied in Chapter 4. Both Chapters 7 and 8
stress the importance of linearly linked allocations as the flexibility of their
space utilization. Chapters 9 and 10 study hashing algorithms and the binary
search trees, respectively. The algorithms are used as the basis for a third
and fourth implementation of the table abstract data type. The emphasis in
both chapters is on the speed with which an arbitrary table item can be
found.

Chapters 5 through 10 thus introduce data structures and the time and
space trade-offs that must be considered in choosing the implementation
of an abstract data type. The exercises in these chapters are mostly con-
cerned with manipulations of the data structures being studied. The proj-
ects in these chapters are more difficult than those earlier in the book,
requiring the use of several abstract data types in each.

For quick reference, the abstract data type specifications are drawn together
in an appendix that also includes a page index to the implementations of
each abstract data type. A composite glossary/index provides definitions for
all major terms and also includes descriptions of all procedures and func-
tions arranged alphabetically with page references.
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Computers are capable of processing immense detail at immense speed
with immense accuracy. At least, this is the way they appear to us. That they
produce information at such incredible speed, while making no mistakes in
their calculations, only heightens our amazement. We on the other hand
are lazy; we get bored; we avoid mindless, repetitive tasks; and we are extremely
error prone.

The computer does do very well what we hate to do, and in fact what we
do very poorly. But, we must also appreciate ourselves, for we do well what
the computer is unable to do for itself. Only we can understand; only we
can see meaning in all the details; only we can write the programs. It is truly
a symbiosis: the computer is utterly incapable of writing programs or of
even deciding what programs should be written, and we would be bored or
often incapable of performing for ourselves the calculations we program for
the computer. )

But how exactly, with our intelligence and our ability to understand, do
we see meaning in the bit manipulations of a computer? The answer is of
course that we don't look at the bits and we don't look at the manipulations
of them. Rather, we group the bits into larger groups and call them numbers
and characters and instruction codes. We then group these things into yet
larger groups and call them vectors, character strings, tables, /O buffers,
and code segments. We also group bit manipulations and call them read
operations, arithmetic expression evaluations, search algorithms, and all
sorts of other meaningful names.

This process of grouping things into single concepts and then grouping
concepts into ever higher levels of concepts is called abstraction.

Here's an experiment. Try memorizing the following list of nouns. Then,
without looking, write the nouns down, in any order. Don’t just go on read-
ing; do the experiment.

BROCCOLI PENCIL ERASER CAULIFLOWER
CHAIR STAPLER TABLE CABBAGE SOFA

If you were able to memorize the list, ask yourself how you did it. Didn’t
you do so by using the groupings:

BROCCOLI CAULIFLOWER CABBAGE
PENCIL ERASER STAPLER
CHAIR TABLE SOFA

If you were unable to memorize this list, wasn't it because you wowldn't
expend the effort required to see the groupings? That effort that you were
or were not willing to expend is the most significant power of your mind. It
is the power by which your mind imposes on a group of nouns a unity that
is not readily apparent in the presentation. It is the power by which your
mind imposes structure on what is otherwise unstructured. This kind of
thinking is built into your brain. It is called abstraction.
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The ability to think in abstractions is what makes us human. It is our
defining trait, and it is the basis for our intelligence. It is important to keep
this in mind, since it is essential to the human-computer symbiosis. The
computer’s speed and accuracy and the human’s capacity for abstraction
form a powerful symbiotic relationship only if the role of each is understood

and appreciated.

Abstraction by Procedures

Programming language designers early recognized our tendency for operation
abstraction and supported it with the subprogram, something variously called

subroutine, procedure, or function.

For the moment, let’s discuss only the Pascal procedure. Our comments will

apply equally well to all forms of subprogram.
As generally introduced in the beginning texts on programming, the
advantage to the use of procedures is their elimination of repetitive code.

Suppose we want to draw the figure

Of course we can use Pascal output statements and the characters -, :, and
* to generate the figure, as follows:

PROGRAM DRAW3

BEGIN
MRITELN( ‘mmmmmmmoommmmme y
WRITELN(C: : )
WRITELN(/=-mmmmemmmmmm )
WRITELN( PIYIIIIIIIIIIIF)
MRITELN( /oo oo mmme )
WRITELN(C 'z : )
MRITELN( /emmmmmmmammm e mm 0

R B as BN W we s

END .

This pmgram obviously produces the desired figure, but what is that figure?
Realizing that the first three write statements are identical with the last
three, the programmer also could have used a procedure:

[
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PROGRAM DRAW?
PROCEDURE DRAWTREADS
BEGIN '
WRITELN{ c-eemmmm e memm
WRITELN(: H
WRITELN( =~ m e e e e e
END
BEGIN
DRAWTREAD§
WRITELN( FEFIFIFFIINENNNG
DRAWTREAD i
END.

~

~ 0~

e
- e ax

The argument is that we have thus eliminated the repetitive code. We have
used the three write statements once in the procedure DRAWTREAD. Then
we use that procedure twice to draw two treads, one above and one below
the centerline of >>>>> 355235355,

But this is not the most important advantage to the use of procedures.
Rather, it is their support for the process of abstraction. In the last version,
the programmer has indeed eliminated the repeated use of three write
staternents, but, much more important, those three write statements have
aname: DRAWTREAD. This name is immensely helpful in understanding the
program. It names a single concept, drawing a tread, that gives meaning to
what otherwise appear to be three meaningless write statements. We might
now begin to wonder what the programmer has in mind when drawing this
figure. Suppose the programmer goes a step further and writes two other
procedures:

PROGRAM DRAW}
PROCEDURE DRAWTREAD

BEGIN
MRITELN( ‘—cmomemmmemmene 3
MRITELN( ‘: : )3
WMRITELN( ‘= cmmmemmmmmmam )3
END3

PROCEDURE DRAWGUNTURRETS
BEGIN

WRITELNC FERREEIERINRNNN)G
ENDS

PROCEDURE DRAWTANKS]

BEGIN
DRAWTREAD 3
DRAWGUNTURRET 3
DRAWTREAD

ENDj

BEGIN DRAWTANK END.

Here, the programmer has not eliminated any repetitive code. But now a
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meaningful name has been given to the acts of drawing the center line and
drawing the entire figure. If there was previously any doubt that the entire
figure is an armored tank, as known and loved by video game enthusiasts,
that doubt has been erased. Suddenly, we no longer see the figure as a
combination of -, i, and ». We see the parts of a tank—the gun turret and
the two tractor treads.

As the example illustrates, procedures are used to make groups of instructions
meaningful by giving them a name.

If the instructions are carefully chosen and if the name applied to them is
accurate, then the procedure performs a single meaningful task that we
think of as one operation. We then forget how the procedure is performed,
remembering only what it does. This forgetting takes no effort on our part;
it is natural to our intelligence. This is, in fact, what abstraction is. It is a
conceptual wall around the procedure, a wall that is opaque in both direc-
tions because we forget what is on the other side. From inside, we need
know only what the procedure does to be able to understand how it does
it; we don’t need to remember the uses to which the procedure is put. From
the outside also, we need to know only what the procedure does to be able
to make use of it; we don’t need to remember how the procedure performs
its task.

The use of procedures helps us understand programs only if they are
chosen to implement concepts that are easy to understand. Then we can
remember the concept and forget the details of the procedure implemen-
tation. But if the procedures are not well chosen, our ability to remember
by abstraction will fail us and we will not be able to understand the program.

Essentially, useful procedures implement concepts that can be understood in
isolation from the program in which they are used.

Four criteria are indicative of good procedures:

1. Does the procedure have a descriptive name?
2. Is the procedure easily testable?

3. Is the procedure easily modified?

4. Is the procedure potentially reusable?

The first criterion asks whether the procedure name accurately reflects what
the procedure does. If no such name can be found, then the procedure is
not well conceived—it does not implement a simple abstract concept.

By the second criterion, we determine whether the procedure can be
easily tested in isolation from the rest of the program. This is important in
testing large programs because if isolated testing is not possible, it may be
difficult to determine the cause of an error. If a procedure implements an
independent, understandable concept, then it can be tested in isolation.

The third criterion of a well-chosen procedure asks whether changes in
the procedure require changes in other portions of the program. Programs
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are changed frequently during the years of their use. This is difficult to
accommodate if the procedures that make up a program cannot be modified
in isolation from other procedures of the same program. If the procedure
implements an isolated concept, then it is easy to modify.

Finally, we check to see whether the procedure is potentially usable from
several different points in a program or in other programs. Again, this is a
good indication that the procedure implements an isolated, independent
idea that we will be able to hold in our minds as a single concept.

Top-Down Structured Programming

So the use of procedures is good because it supports the mode of intelli-
gence that we bring to the problem of understanding programs. We have
also said that good procedures implement self-contained, independent con-
cepts. It is some help to know what we want. But we are still a long way
from knowing how to write good procedures. How are we, in a practical
sense, to decide what the procedures should be and what their names,
parameters, and global variables shauld be?

The issue of how one practically chooses procedures is called program
design. There are two techniques that help with this question. They are
called top-down design and structured programming.

Top-down design is a technique for program design that tells us to begin a
design by first understanding the problem. Decompose this understanding
into smaller problems such that, if we could solve the smaller problems, then

we could solve the original problem.

The original problem is thus decomposed into a number of smaller prob-
lems, each of which is solved in the same way. Iterate the process until the
problems left unsolved can be solved directly by program statements. Top-
down design requires some courage—courage gained mostly from experi-
ence with it.

Structured programming is a technique for performing the problem
decomposition required by a top-down design. It requires that we decompose
a problem in one of three ways:

1. Sequencing
2. Iteration
3. Selection

The best way to discuss these three methods of structured decomposition
is in the context of an example.
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sented as rectangles. The robot, in moving to the pot of gold, must not walk
into any buildings; it must go around.

In Figure 1.2, the pot contains only 4 pieces of gold, the robot is initially
facing west, and there are a half-dozen buildings to be avoided. To keep the
geometry simple and the intelligence required of the robot minimal, we will
assume that all rectangles are aligned so that their edges are horizontal and
vertical. We will also assume that the rectangular buildings are far enough
apart to allow the robot to move between them. This means that there is at
least one line of dots between any two buildings. We want a program that
will print instructions that move the robot from its initial position to the
pot of gold without hitting any buildings and will then indicate how many
gold pieces to pick up.

Solving the Problem with Top-Down Structured Programming

Top-down design tells us to understand the original problem by decom-
posing it into simpler subproblems. Structured programming tells us to
decompose a problem in one of three ways: sequencing, iteration, and
selection.

Sequencing is used when a problem can be decomposed into parts such that,
if the solutions to the parts are executed one after another, the original
problem is solved.

Pascal supports this mode of decomposition by allowing any number of
instructions to be enclosed in a BEGIN. . END pair and separated from one
another by semicolons. In the robot/gold problem, we must do three things
in sequence: injtialize the map in the program memory, print instructions
that move the robot to the pot of gold as indicated on the map, and print
instructions that indicate how many pieces of gold are to be picked up. So
we decompose to three procedures MAKEMAP, GOTOGOLD, and PICKGOLD
that do exactly these three things. Then we can write GETGOLD by se-
quencing:

PROCEDURE GETGOLD?

BEGIN
MAKEMAP 3
GOTOGOLD
PICKGOLD S
END 3

This is sequencing. We began with the problem of printing instructions for
retrieving gold. We decomposed that problem into three subproblems that,
when solved, permit a solution to the original problem. This is top-down
design. We don’t yet know how to implement the procedures MAKEMAP,
GOTOGOLD, and PICKGOLD. But we have broken the problem down somewhat.



level abstract point of view. The robot must make repeated moves toward
the pot of gold. Decompose to a procedure GOCLOSER that prints instruc-
tions that move the robot closer to the pot of gold. We don’t know how this
will be done, but we do know that if we can move closer to the pot of gold,
we can repeat this motion until we are actually there. So, in addition to the
procedure GOCLOSER, we need to be able to test whether the robot has
arrived at the pot of gold. This is a further decomposition to a boolean
function ATGOLD, which returns a TRUE or FALSE value depending on
whether the robot is or is not at the pot of gold. Again, we don’t know how
this will be done. But we can now write the procedure GOTOGOLD by iter-
ation:

PROCEDURE GOTODGOLD3S
BEGIN
WHILE NOT ATGOLD
DO GOCLOSER
END 3

As long as ATGOLD is FALSE, the WHILE statement will repeatedly execute
the procedure GOCLOSER. Thus the procedure GOCLOSER will repeatedly
print instructions that move the robot closer and closer to the gold until it
has arrived at its destination.

We have now decomposed the problem of moving the robot to two sub-
problems: how to print instructions that move the robot closer (GOCLOSER)
and how to test whether the robot is at the pot of gold (ATGOLD). Remaining
from the first decomposition, we must also implement MAKEMAP and PICK -
GOLD. The two steps of decomposition have used sequencing and iteration,

As another example of decomposition by sequencing, consider GOCL.0SER.
We cannot move the robot forward unless we know that it is facing toward
the gold. To handle this, we decompose GOCLOSER into two steps. First,
print instructions that turn the robot in a direction that leads closer to the
gold, and second, print instructions that actually make a move in the robot’s
facing direction. Thus we decompose to procedures FACEGOLD and MAKE -
MOVE, which perform these two steps and use sequencing:

PROCEDURE GOCLOSERS
BEGIN
FACEGOLD 3
MAKEMOVE §
END 3

We have now broken down the original problem in three decomposition
steps. We have decomposed GETGOLD, GOTOGOLD, and GOCLOSER, and we
are yet left with MAKEMAP, ATGOLD, FACEGOLD, MAKEMOVE, and PICKGOLD.
We can diagram the decomposition as shown in Figure 1.3.

The list of unsolved problems is getting larger! Our hope is that the prob-
lems are also getting simpler. Certainly, we are acquiring a better under-
standing of the original problem.

As another example of decomposition by iteration, consider FACEGOLD,
which turns the robot toward the gold. The robot can move from dot to dot
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