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ROBUST DESIGN FOR SYSTEMS WITH ORSERVERS

Abstract

Systems with structured uncertainties in the state matrices, the input matrices and the output
matrices are considered in this paper. An observer based feedback control law is derived to make the

closed-loop system robust under the constraint of pole assignment.
1 Introduction

An observer is usually constructed when the states of a system are not all available. If
the system is exactly described, the difference between the states of the system and those of
the observer will vanish at the infinite time. But for an uncertain system, this will usually
not be true. Stability robustness of the observer has been considered in many papers and
robustness design for the closed-loop system has been discussed by Petersen, where a design
method was given by solving two Riccati equations. The uncertainty considered is parameter
dependent,

Consider the following system with structured uncertainties:

() = (A+GA HDx(8) + (B4 GoA, Hy ) u(z)
y(l) - (C+G3A3H3 Yx(t)
where x(2) €ER" is the state, u(z) € R™ is the control and y(2) € R? is the measuarable out-
put. A, B, and C are the nominal state matrix, input matrix and output matrix, respective-

(D

ly, with the appropriate dimensions. G,,H,,i=1,2,3 are known matrices delining the struc-
ture of the uncertainties. A,,A; and A; are uncertain matrices bounded by the norm;
olal<<l, i=1,2,3

Denote AA=G,AH:,AB=G,;A,H; , AC=C;A; H;. Roubust design methods using state
feedback have been developed for the case when C=1, AB=0. In the paper by Hinrichsen,
no constraint is made on the eigenvalues of A+ BF except for stability. While in the paper by
Kautsky, the eigenvalues of A+ BF are prescribed.

In this paper, the general case will be studied. Since C is not necessarily to be identity,
a static or dynamic output feedback should be applied. Here, The problem of designing an
observer based feedback control law to make the system roubust under the constraint of pole
assignment will be discussed.

2 Roubust Analysis and the Performance Index

2.1 The closed-loop system

Assumptions: (A,B) is controllable and (C,A) is observable.



Consider the system (1) given in Section 1. The following observer is constructed to ap-

proximate the state;

2 =Az+L(Cz—y)+Bu (2)
and the feedback u=Fz is applied. Then, the closed-loop system becomes:
= (A+AA)x+ (B+AB)Fx } %
z =—L(C+AC)x+ (A+LC +BF)z

Let e=z—ux. After state transformation, we have:
e A+ BF + AA+ ABF  BF + ABF :H:.r]
[é]z LAA~ABF—LAC A+LC — ABF
A+BF  BF AA+ABF ABF
0 A—i—LC] and AQ:[:—AA—ABF—LAC —ABF
nominal closed-loop state matrix and A is its uncertain part.

4)

e

Denote (2=[ :}, then (2 is the

2.2 Sufficient condition for robust stability
Noting that AA=G,A,H, ,AB=G,A;H,, and AC=G;4A; H; , AR may be rewriten as;
0
G] Gz 0 Al O H1 O
A.Q = [ ] O Az 0 HgF HzF
-G, -G, —1G;
0 0 A H; 0

The following theorem is needed for robust stability,
Theorem 1 Let

H 0
A+BF BF 1\ G G, 0
T(s) = |H,F H,F{-« I—[ :' [ ]
) L; ;} <S 0 A+Lc> -G, —G, 1G,
3

G G 0 o0
Denote G:[ ! z ],HZ {HzF HZFJ ’then T(S):H(SI—.Q)_IG-
—Gl _‘Gz ’_LGg
H,; 0
Suppose that (2 is stable, then the closed-loop system (3) is robustly stable if; )
[T e <1 5

2.3 Pole assignment constraint

Given a set of self-conjugate complex numbers, 2,4, - sA.s and 8,,8;,++,6,, all with
negative real part. It is desired that the eigenvalues of A+BF and A+LC to be AL sAs oo,
and 6,,8;,-*-,8,, respectively. Suppose that A;, A, , «++, A.s and 6,,8;,-,9,, are different
from one another, then, the pole assignment constraint may be equivalently stated as fol-
lows:

T"(A+BF)V, = diag[rh"“vln]z A (6)
Tz(A‘f‘LC)Tz_lz diag[&,'"yan]’: Az (7

So, robust design under the constraint of pole assignment may be formulated as:
min || T(s) ||
s.t. Vi'(A+BF)V, = Al}
T;(A+LC)T;' = A,

(8



2.4 Performance index related to robustness

The optimization problem (8) is difficult to solve. In the following, a performance index
which is closely related to || T(s) || . will be derived to obtam a sub-optimal solution of (8).

Suppose that the constraints (6) and (7) are both satisfied. Let Y be the solution of
AY—YA, = V{'BFT;! 9

then
IR Gl T P
0 T, 0 50 1 Lo 1llo A,
#[VTI YTz][A+BF BF ][Vl —VlY]
Lo T 0 A+LCILO T3
. [A—{-BF BF ]_ I:Vl —VIYMA1 o][vl—l YTZ:]
- 0 A+ILcd Lo T8 Jlo A,dLo T,
v, —VlYJ {Al OJ ”I[VT‘ YTZJ
_ _ 17 — . _
T()= H(GI — G — H {0 e (sl . Az) o 1 G
V] _—Vl Y] [V?l YTQ 1
= N - Py T :I’
Denote [O Ty 0 T T,then V
A, o] -1
—— _— 1
T(s) HV(sI [0 Az) e 10)
SO,
o =[0 A ]) ]
1T | <ol HV o TG swpe (ol =[5 ])
1 1
= o[HV] o[ 1G] max| 1gir TR |] (11

In the above steps, a similarity transformation is applied to separate w from F, V,,L, T,
the parameters to be determined. Notice that H,V, T, and G depend on F,V,,L and T5.

The inequality (11) shows that the minimization of o[ H V] o[ TG] will tend to minimize
| T || .

Define || » || as the spectral norm, or the singular value of a matrix;

QI =o[Q] = 2.[QQ]

Choose the performance index J as
J=SIHV* TG
Replace H, V, T and G by

H, 0
— Y 1
[HzF HZFJQ [‘gl Vl ]v [VI YY‘Z] and [ GI GZ 0 :I

H 0 T, 0 T, —G —G: LG
3
respectively, it follows
H]V] - H1V1Y z ) 1 2
J=ilmFv, —HFV Y+ HFT "V‘ O —YRG VTG —YToG, —YTLIG,
= LJFT7 .
2 H3V1 - H3V1Y - TZGl - Tsz _ TZLG3
(12

— 5 —



Now consider the following optimization problem:
min J
s.t. Vit(A+BF)V, = A,
T(A+LO T = A,
AY—YA, = VI'BFT3!
The above three constraints may be relaxed by introducing two parameters U& R™" and W€
R™* and defining two functions in the following Section 3.

(13

2.5 Real diagonal form of A, and A,

Suppose that the desired eigenvalues of A+BF are 4,,+:*,4,, where 4;,4,;;, are complex
conjugate pairs, A;, A1 =0a;+ib:. Define

. Q; B:
A] = dlagl:rll 2°°%, -——Bi a; ""9An} (14:)
Similarly, if 6;, 0,4+, are complex pairs, &;,6,1, =¢;+j¥;, also define
. €; 7i
A = dlag[al sy v e, ,-",5,,] (15)

When A, and A, are defined in this way, the complex consideration is avoided while the pole
assignment constraint is kept unchanged.

3 Relaxation of the Constraints

The constraints in (13) may be relaxed by defining function £, :U & R™"—(F,V,) €
R™" X R"™" and function f; :WER™¥?—(T,,L) € R™" X R"¥?,

Definition 1  Suppose that (A,B) is controllable, A, is a real diagonal matix as defined
in (14). Assume that A and A, have no common eigenvalue, then the function f; may be de-
fined as follows;

Let U€ R™", solve

AV1 --V1A1 - BU (16)
for Vi. If V, is nonsingular, define
E=UV!
Then (F,V) is the image of U under f;, thatis, (F,V,)= f; (U). The domain of f1» deno-
ted by Dy, , is defined as all the U that make V, nonsingular, and the range of f1 denoted by
Ry

. » is the image of Dy, under fi.

Theorem 2 The range of f, is the set of all the pairs (F,V,) that satisfy Vi!(A+
BF) « V,=A,. And if the domain of £, is not empty, it must be a dense and open set in
R™",

Proof See our previous paper on Proceeding of MTNS, Vol, 2. , Birkhaiiser, 1990,

Those for f; may be defined in a dual manner:

Definition 2 Suppose that (C,A) is observable, A; is a real diagonal matrix as defined
in (15). Assume that A and A, have no common eigenvalue, then f; is defined as follows:

et WER™?, solve



TzA—Asz =—WC (17)

If T, is nonsingular, define
L =T;'W
Then (T;,L) is the image of W under f,, thatis, (T;,L)=f,(W). The domain of f,, de-
noted by Dy, , is defined as all the W that make T nonsingular, and the range of f,, denoted
by Ry, , is defined as the image of Dy, under f>.
Theorem 3 The range of f; is the set of all the pairs (T;,L) that satisfy T, (A+LC)
=A;. H the domain of f; is not empty, it must be a dense and open set in R"™*?,
Using the above results, the first two constraints of (13) may be replaced by
(F, V) = M), Ue€ Dy
(Tz,L) = f2(W), W& Dy
Since A, and A; have no common eigenvalue, Y is uniquely determined by V,, F, and T,.
So, Y is a function of U and W. Thus J is a functional of U and W.
aJ

A method to compute U and —J will be given in the next section. Since Dy, and Dy, are

and

dense and open set in R™" and R"X‘D » J may be minimized by the gradient method.
4 The Gradient Method

From the previous section, the optimization problem (13) may be formulated as:
, { VI'G, —YT,G Vi'G, —YT,G, —YT,LG,|?
min< J -1

— TG, — TG, —T,LG,
H,V, — H,\V\Y z
« |H,FV, — H,FV Y+ H,FT3! }
H;V, — H;V\Y
where v
(F,WWp= fidh: AV, —V,A) =—BU, F=UV{,UG¢€ Dy
(T, D= f(W): T,A—A, T, =—WC, L=T;'W,We Dp
and

AY—YA, = V{!BFT3;! (18)
V1 and F are determined by U, T; and L are determined by W, and Y is jointly determined by
U and W. Therefore J is a fuctional of U and W, and U and W are free parameters.
Let

J= _” Vi'G, —YT,G, VT'G, —YT.G;, —YT,LG;|? (19)
2 — TG — TG, — T, LG;
H,V, — H\V\Y 2
Jo= 5 |H:FV: —H,FV\Y+ H,FT; (20)
H3;V, — H,V\Y

then J=2],],,

=21 (5 )+ 21 (55)



=2 (G )+ (ow)

aw
d
(1) Firstly, find 3{] nd B‘J&l’
Ilet P] == V1 Gl —WzGl ’ Pz = Vl_le —YTsz
= YTzLGsv P, = TZGI
P5:T2629 PG:TzIG3

—P
P——[ Py P, 3], then
_P4 —‘Ps —Pﬁ

Ji=5 I PP =4 2P P] @D

Denote

Let w be the right eigenvetor of P'P corresponding to Amax [P’P 7 and w'w=1. Part

s, =S,
S —5s
-85 —Ss

where S; has the same size with P;. It is derived in the appendix that
%—{—} — (ZB+X,B+Vi' Ty X,Vi'B)’ 22)
where Z, X, and X, satisfy
ZA —AZ=—Q, XA —AXi=Q
X,A— A, X,=V{'BFT X, VT' + V! T;* X, V' BF
and Q=—V1 (G S 4Gy S'HVi?
Q=—T.GS'| — T:G;S; + WG, S,

aJi_
o= (@ +CZ2+CX: )

/ ’
ww P’ as,

where Z, X, and X, satisfy
AZ —ZA,=—Q
XA —AXi=Q(=Q)
AX, — X, A= TIXIVIIBFT_I

and Q= G:SY +G; S
Q4=—G1S Y-GS, Y+G S +G.S's
Qs_ Q
(2) Secondly, find —ajﬁ and (;%
Let N,= H,V,,N, = H,FV,, N; = H,V,,N, = HV,Y
Ns= H,FV,\Y — H,FT;', N; = H;V\Y
1 ——N';
Denote N= {Nz —Ns} sthen Jo==% | NI *=5Am[N'N]J.
N3 _NG
Let v be the right eigenvector of N'N corresponding to Awmx[ N'N ] and v'v=1. Partiti-
R, R, R’

tion vo'N’ as[ , , , :l,where R, has the same size with N;, hence
_R 4 _R 5 _R 6

— 8 —



anL; =7ZB+Q +X:B+Vi'T;' X, Vi'B (23)

where Z, X, and X satisfy
ZA _AIZ:_Q7 ’ X1A1 _AZXI = (%
X,A— A X,=V'BFT' X, V1! + V' T;' X, V' BF
and Q=R ,H,+YR'sH, —V{'T;'R'sH,
Q=R H,+R:Hs+YR',H, +V{'T;'R'sH,F + YR H;.
Q=R H\V, +R's H2U+R HV,

3]z 24) .
W (CZ +CX3)’ (24)

where Z, X, and X, satisfy
AZ —ZA,=—
XlAl —A2X1= QlO(= QB)
AX, — X;A,= T;' X, Vi'BFT3*

and Q= T;'R'sH;FT3"
Qm: Qs
(3) Combining B{Jl' and 39.(]}2 an cl a]l d 8]2 One will be found
o — 2P TP X Vi B+ 11Q + ZB + X, B) (25)

where Z, X, and X; satisfy
af — 2(J,Qs +CZ +CXy)’ (26)

where Z, X, and X; satisfy
AZ —ZA,=—J, Qi — ] Qe
XlAl —-AZXI - JZQS +]1Q10 - JZQZ +JIQ8
AX, — X;A,= T7' X, VI'BFT3!
Thus the calculation of a[J] and aﬁ’, requires solving five Sylvester equations. Since A; and A,
are diagonal matrices, each Sylvester equation is equivalent to an n-ordered linear algebraic
equations,
The computation is to obtain Q;,Q;, ***, Qs » which involves many matrix production
and addition.
If J is not convex, it may have many local infimums. But the optimization is smooth,

since for any U€ Dy, and W€ Dy, , % and “&I, are uniquely determined. So, the gradient

method will guarantee J to decrease until a local infimum is reached. For the purpose of ro-
bust design, several infimums should be found and choose the smallest among them. To as-
certain robust stability of the closed-loop system, the condition || T(s) || o <1 should be
checked. If this condition does not satisfied, a search for smaller infimums of J should be
made or adjust the prescribed eigenvalues, A; and 9.



5 Concluding Remarks

The main contribution of this paper includes obtaining performance indexes related to
robustness, relaxing the pole assignment constraint and deriving formulas to calculate the

gradients by using some properties of Kroneker product.
Similar method may be applied for solving robustness design problems, with the con-

straint of pole assignment. For example, for state feedback control, J may be chosen as,
]:% | A+BF | z’—%— | HV?, VG| Z’% [ VI (AABIV (2, or || PI?, etc, where

V is the eigenvector matrix of A4+BF and P is the solution to (A+BF)'P+P(A+BF)=
_Q.
If there is no constraint on the eigenvalues of A+BF and A+ LC, except for stability. J

may also be optimized by gradient method, since the computation of g,{_ is not a difficult

task.
6 Appendix—Derivation of Formulas to Calculate the Gradients

The derivation of the gradients is based on some properties of Kroneker product. A pre-
liminary knowledge of knonecker product etc is given at first.

Preliminary knowledge:

Definition 3 Let X€R™", Y€ R?*?, the Kroneker product of X and Y, XX)Y is defined

as:

.l‘uY 1‘12Y b 1‘1,,Y

X@Y: _ 1:21Y I.zzy = R™<m
Y e v Y
Definition 4 Let X€R™", the row vector form of X, rsX, is defined as;
rsX: = [111 3 X129 9 L1n 9 L2l 9 X229 " 9 XLn s *"° ,x,,,,]
and the collum vector form of X, ¢sX, is defined as:
csX: = [l'll 3219 s Tl s L12 9L22 9" 9Tz 9°°* ’Irm]/

Definition 5 Let X&R™", then the trace of X, trX, is defined as:

trX = Exu
Some properties of X), cs, rs and tr are given as follows:
Fact1 trXY=trYX
Fact 2 trXY=rsX * csY=rsY » csX
Fact 3 cs(XYZ2)=(Z'®X) * csY
rs(XYZ) =rsY(X'®2Z)
Fact4 For X€R™" and YER™?,
es(XY)=(I,QX) * csY=(Y'®RI,) * csX
rs(XY)=r1sY + (X' ®I,)=rsX + (I,QY)
— 10 —



Proofs for the above facts can be found in Graham’s book. The following theorem is a
direct consequence from Fact 4.
Theorem 4 For AER”", BER™" and C& R,
(1) AV, —V,;A=—BU is eqivalent to:
(I, RA—A"' QL) +csV, ==, XB) « csU
(2) T,A—A,T,=—WC is equvalent to;
A RL—L,RA) ces T, = (C R1,) « csW
(3) Ai)Y—YA,=—Vi'BFT;! is equivalent to:
(I, A —A, RIL,) « csY = es(Vi'BFT3')
]1

Jl 2 ”1 ” 2“"13)([1 /1 :l

Let A=2A,..[ P'P7, then P'Pw=Aw,

apP’ ’ 3P A Jw
P+ P = —
<8u + du; ) +P P du; E)u,«j +4 du;
Multiply both side with w’, notice w'P'P=2Aw", w'w=1, one gets
dA ’ 3P ’ 3P
So au,-j (3 +P+P du; )w = 2u/P E)u,,
aJ, __Ip! aP . 'p’ Q
s = w P au, = tr[ww P 8u,«j:|

S ) __S/4 & apz o aP3
_ trI: ’ ’ :| au,;,- au,»j aul-j

S, —S%
- S’ . S/ —_ 3P4 a_‘P5 a_RS
8 6 au,-j aui_; au,»,-

6
= trZS,i%Pi

- us, (%Vul _ T2G1)+S (%G T2G2)+S’3;Y ]

= (since 33}2 —0,T,L =W,aai; = 0,from (18))

——tr':S (~ v ngVl‘Gl—a‘Z_ G J+Ss(— V7 gv;lVl‘Gz—;Zj .G )
+5s 33/ J

= (G =Vt Gove)

3V1

} ot (1.6 Sh— TiGo S+ WG o) aY]
au,-j

— tr[— Vi' (G, S\ Vi 4G, S, Vi)
(since trMN = trNM)
Let
Q=—Vi'(G S,1VT1 +G, S, Vit
Qz = TZGI S,l - TZGZS’Z +WG35,3
— 11 —



Then
oy _ tr]:Ql Vi +Q ‘—55]
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It follows
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