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Preface

This is a book for people interested in solving optimization problems. Because of the wide
(and growing) use of optimization in science, engineering, economics, and industry, it is
essential for students and practitioners alike to develop an understanding of optimization
algorithms. Knowledge of the capabilities and limitations of these algorithms leads to a better
understanding of their impact on various applications, and points the way to future research
on improving and extending optimization algorithms and software. Our goal in this book
is to give a comprehensive description of the most powerful, state-of-the-art, techniques
for solving continuous optimization problems. By presenting the motivating ideas for each
algorithm, we try to stimulate the reader’s intuition and make the technical details easier to
follow. Formal mathematical requirements are kept to a minimum.

Because of our focus on continuous problems, we have omitted discussion ofimportant
optimization topics such as discrete and stochastic optimization. However, there are a great
many applications that can be formulated as continuous optimization problems; for instance,

finding the optimal trajectory for an aircraft or a robot arm;

identifying the seismic properties of a piece of the earth’s crust by fitting a model of
the region under study to a set of readings from a network of recording stations;
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designing a portfolio of investments to maximize expected return while maintaining
an acceptable level of risk;

controlling a chemical process or a mechanical device to optimize performance or
meet standards of robustness;

computing the optimal shape of an automobile or aircraft component.

Every year optimization algorithms are being called on to handle problems that are
much larger and complex than in the past. Accordingly, the book emphasizes large-scale
optimization techniques, such as interior-point methods, inexact Newton methods, limited-
memory methods, and the role of partially separable functions and automatic differentiation.
It treats important topics such as trust-region methods and sequential quadratic program-
ming more thoroughly than existing texts, and includes comprehensive discussion of such
“core curriculum” topics as constrained optimization theory, Newton and quasi-Newton
methods, nonlinear least squares and nonlinear equations, the simplex method, and penalty
and barrier methods for nonlinear programming.

THE AUDIENCE

We intend that this book will be used in graduate-level courses in optimization, as of-
fered in engineering, operations research, computer science, and mathematics departments.
There is enough material here for a two-semester (or three-quarter) sequence of courses.
We hope, too, that this book will be used by practitioners in engineering, basic science, and
industry, and our presentation style is intended to facilitate self-study. Since the book treats
a number of new algorithms and ideas that have not been described in earlier textbooks, we
hope that this book will also be a useful reference for optimization researchers.

Prerequisites for this book include some knowledge of linear algebra (including nu-
merical linear algebra) and the standard sequence of calculus courses. To make the book as
self-contained as possible, we have summarized much of the relevant material from these ar-
eas in the Appendix. Our experience in teaching engineering students has shown us that the
material is best assimilated when combined with computer programming projects in which
the student gains a good feeling for the algorithms—their complexity, memory demands, and
elegance—and for the applications. In most chapters we provide simple computer exercises
that require only minimal programming proficiency.

EMPHASIS AND WRITING STYLE

We have used a conversational style to motivate the ideas and present the numerical
algorithms. Rather than being as concise as possible, our aim is to make the discussion flow
in a natural way. As a result, the book is comparatively long, but we believe that it can be
read relatively rapidly. The instructor can assign substantial reading assignments from the
text and focus in class only on the main ideas.
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A typical chapter begins with a nonrigorous discussion of the topic at hand, including
figures and diagrams and excluding technical details as far as possible. In subsequent sections,
the algorithms are motivated and discussed, and then stated explicitly. The major theoretical
results are stated, and in many cases proved, in a rigorous fashion. These proofs can be
skipped by readers who wish to avoid technical details.

The practice of optimization depends not only on efficient and robust algorithms,
but also on good modeling techniques, careful interpretation of results, and user-friendly
software. In this book we discuss the various aspects of the optimization process—modeling,
optimality conditions, algorithms, implementation, and interpretation of results—but not
with equal weight. Examples throughout the book show how practical problems are formu-
lated as optimization problems, but our treatment of modeling is light and serves mainly
to set the stage for algorithmic developments. We refer the reader to Dantzig [63] and
Fourer, Gay, and Kernighan [92] for more comprehensive discussion of this issue. Our treat-
ment of optimality conditions is thorough but not exhaustive; some concepts are discussed
more extensively in Mangasarian [154] and Clarke [42]. As mentioned above, we are quite
comprehensive in discussing optimization algorithms.

TOPICS NOT COVERED

We omit some important topics, such as network optimization, integer programming,
stochastic programming, nonsmooth optimization, and global optimization. Network and
integer optimization are described in some excellent texts: for instance, Ahuja, Magnanti, and
Orlin [1] in the case of network optimization and Nemhauser and Wolsey [179], Papadim-
itriou and Steiglitz [190], and Wolsey [249] in the case of integer programming. Books on
stochastic optimization are only now appearing; we mention those of Kall and Wallace [139],
Birge and Louveaux [11]. Nonsmooth optimization comes in many flavors. The relatively
simple structures that arise in robust data fitting (which is sometimes based on the £, norm)
are treated by Osborne {187] and Fletcher [83]. The latter book also discusses algorithms
for nonsmooth penalty functions that arise in constrained optimization; we discuss these
briefly, too, in Chapter 18. A more analytical treatment of nonsmooth optimization is given
by Hiriart-Urruty and Lemaréchal [137]. We omit detailed treatment of some important
topics that are the focus of intense current research, including interior-point methods for
nonlinear programming and algorithms for complementarity problems.

ADDITIONAL RESOURCE

The material in the book is complemented by an online resource called the NEOS
Guide, which can be found on the World-Wide Web at

http://www.mcs.anl.gov/otc/Guide/

The Guide contains information about most areas of optimization, and presents a number of
case studies that describe applications of various optimization algorithms to real-world prob-

vii
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lems such as portfolio optimization and optimal dieting. Some of this material is interactive
in nature and has been used extensively for class exercises.

For the most part, we have omitted detailed discussions of specific software packages,
and refer the reader to Moré and Wright [173] or to the Software Guide section of the NEOS
Guide, which can be found at

http://www.mcs.anl.gov/otc/Guide/SoftwareGuide/

Users of optimization software refer in great numbers to this web site, which is being
constantly updated to reflect new packages and changes to existing software.
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FINAL REMARK

In the preface to his 1987 book [83], Roger Fletcher described the field of optimization
as a “fascinating blend of theory and computation, heuristics and rigor” The ever-growing
realm of applications and the explosion in computing power is driving optimization research
in new and exciting directions, and the ingredients identified by Fletcher will continue to
play important roles for many years to come.

Jorge Nocedal  Stephen J. Wright
Evanston, IL Argonne, IL
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