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Preface

To many laymen, mathematicians appear to be problem solvers, people
who do “hard sums”. Even inside the profession we classify ourselves as
either theorists or problem solvers. Mathematics is kept alive, much more
than by the activities of either class, by the appearance of a succession of
unsolved problems, both from within mathematics itself and from the in-
creasing number of disciplines where it is applied. Mathematics often owes
more to those who ask questions than te those who answer them. The solu-
tion of a problem may stifle interest in the area around it. But “Fermat’s
Last Theorem™, because it is not yet a theorem, has generated a great deal
of “good”” mathematics, whether goodness is judged by beauty, by depth or
by applicability. .

To pose good unsolved problems is a difficult art. The balance between
triviality and hopeless unsolvability is delicate. There are many simply
stated problems which experts tell us are unlikely to be solved in the next
generation. But we have seen the Four Color Conjecture settled, even if we
don’t live long enough to learn the status of the Riemann and Goldbach
hypotheses, of twin primes or Mersenne primes, or of odd perfect numbers.
On the other hand, “unsolved” problems may not be unsolved at all, or may
be much more tractable than was at first thought.

Among the many contributions made by Hungarian mathematician
Erdos Pal, not least is the steady flow of well-posed problems. As if these
were not incentive enough, he offers rewards for the first solution of many of
them, at the same time giving his estimate of their difficulty. He has made
many payments, from $1.00 to $1000.00.

One purpose of this book is to provide beginning researchers, and others
who are more mature, but isolated from adequate mathematical stimulus,
~ with a supply of easily understood, if not easily solved, problems which
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viil Preface

they can consider in varying depth, and by making occasional partial pro-
gress, gradually acquire the interest, confidence and persistence that are
essential to successful research.

But tffe book has a much wider purpose. It is important for students
and teachers of mathematics at all levels to realize that although they are
not yet capable of research and may have no hopes or ambitions in that
direction, there are plenty of unsolved problems that are well within their
comprehension, some of which will be solved in their lifetime. Many ama-
teurs have been attracted to the subject and many successful researchers
first gained their confidence by examining problems in euclidean geometry,
in number theory, and more recently in combiratorics and graph theory,
where it is possible to understand questions and even to formulate them and
obtain original results without a deep prior theoretical knowledge.

The idea for the book goes batk some twenty years, when I was impressed
by the circulation of lists of problems by the late Leo Moser and co-author
Hallard Croft, and by the articles of Erdos. Ctoft agreed to let me help him
amplify his collection into a book, and Erdos has repeatedly encouraged
and prodded us. After some time, the Number Theory chapter swelled into
a volume of its own, part of a series which will contain a volume on Geome-
try, Convexity'and Analysis, written by Hallard T. Croft, and one on Com-
binatorics, Graphs and Games by the present writer.

References, sometimes extensive bibliographies, are collected at the end
of each problem or article surveying a group of problems, to save the reader
from turning pages. In order not to lose the advantage of having all references
collected in one alphabetical list, we give an Index of Authots, from which
particular papers can easily be located provided the author is not too pro-
lific. Entries in this index and in the General Index and Glossary of Symbols
are to problem numbers instead of page numbers.

Many people have looked at parts of drafts, corresponded and made
helpful vomments, Some of these were personal friends who are no longer
with.us: Harold Davenport, Hans Heilbronn, Louis Mordell, Leo Moser,
Theodor Motzkin, Alfred Rényi and Paul Turan. Others are H, L. Abbott,
J. W. 8. Cassels, J. H. Conway, P. Erdos, Martin Gardner, R. L. Graham,
H. Halberstam, D. H. and Emma Lehmer, A. M. Odlyzko, Carl Pomerance,
A. Schinzel, J. L. Selfridge, N. J. A. Sloane, E. G. Straus, H. P. F. Swin-
nerton-Dyer and Hugh Williams. A grant from the National (Science and
Engineering) Research Council of Canada has facilitated contact with these
and many others, The award of a Killam Resident Fellowship at The Uni-
versity. of Calgary was especially helpful during the writing of a final draft.
The technical typing was done by Karen McDermid, by Betty Teare and by
Louise Guy, who also helped with proof-reading. The staff of Springer-
Verlag in New York has been courteous, competent and helpful.

In spite of all this help, many errors remain, for which I assume reluctant
responsibility. In any case, if the book is to serve its purpose it will start
becoming out of date from the moment it appears; it has been becoming out
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of date ever since its writing began. I would be glad to hear from readers.
There must be many solutions and references and problems which I don’t
know about. I hope that people will avail themselves of this clearing house.
A few good researchers thrive by rediscovering results for themselves, but
many of us are disappointed when we find that our discoveries have been
anticipated.

“Calgary 81:08:13 Richard K. Guy
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Introduction

Number theory has fascinated both the amateur and the professional for
a longer time than any other branch of mathematics; so that much of it
is now of considerable technical difficulty. However, there are more un-
solved problems than ever before, and though many of these are unlikely
to be solved in the next generation, this probably won’t deter people from
trying. They are so numerous that they have already filled more than one
volume so that the present book is just a personal sample.

Erdés recalls that Landau, at the International Congress in Cambridge
in 1912, gave a talk about primes and mentioned four problems (see Al,
A7, C1 below) which were unattackable in the present state of science,
and says that in 1980 they still are.

Here are some good sources of problems in number theory.

P. Erdos, Some unsolved problems, Michigan Math. J. 4 (1957) 291-300.

P. Erdés, On unsolved problems, Publ. Math. Inst. Hungar. Acad. Sci. 6 (1961) 221-254.

P. Erdés, Quelques Problémes de la Théorie des Nombres, Monographies de I’Enseign-
ment Math. #6, Geneva, 1963, 81-135.

P. Erdos, Extremal problems in number theory, Proc. Symp. Pure Math. 8, Amer. Math.
Soc., Providence, 1965, 181-189.

P. Erdos, Some recent advances and current problems in number theory, in Lectures
on Modern Mathematics 3, Wiley, New York, 1965, 196-244.

P. Erdos, Résultats et problémes en théorie des nombres, Seminar Delange-Pisot-Poitou
24, 1972-73.

P. Erdos, Problems and results in combinatorial number theory, in A Survey of Combin-
atorial Theory, North-Holland, 1973, 117-138.

P. Erdos, Problems and Results in Combinatorial Number Theory, Bordeaux, 1974,

Paul Erdés, Problems and results in combinatorial number theory III, Springer Lecture
Notes in Math. 626 (1977) 43-72; MR 57 #12442.

P. Erdos, Combinatorial problems in geometry and gumber theory, Amer. Math..Soc.
Proc. Sympos. Pure Math. 34 (1979) 149-162.



2 Unsolved Problems in Number Theory

Paul Erdds, A survey of problems in combinatorial number th¢ory,.in Combinatarial
Mathematics, Optimal Designs and their Applications {Proc. Symp. Colo. State
Univ. 1978) Ann. Discrete Math. 6 (1980) 89-115.

Paul Erdés, Problems and results in number theory and graph theory, Congressus
Numerantium XXVII (Proc. 9th Manitoba Conf. Num. Math. Comput. 1979)
Utilitas Math., Winnipeg, 1980, 3-21.

P. Erdos and R. L. Graham, Old and New Problems and Results in Combinatorial
Number -Theory, Monographies de I’Enseignment Math. No. 28, Geneva, 1980.

Pdl Erdos and Andrds Sarkozy, Some solved and unsolved problems in combinatorial
number theory, Math. Slovaca, 28 (1978) 407421 ; MR 80i:10001.

H. Fast and S. Swierczkowski, The New Scottish Book, Wroclaw, 1946—1958.

Heini Halberstam, Some unsolved problems in higher arithmetic, in Ronald Duncan
and Miranda Weston-Smith (eds.) The Encyclopaedia of Ignorance, Pergamon,
Oxford and New York, 1977, 191-203.

Proceedings of Number Theory Conference, Univ. of Colorado, Boulder, 1963.

Report of Institute in the Theory of Numbers, Univ. of Colorado, Boulder, 1959.

Daniel Shanks, Solved and Unsolved Problems in Number Theory, Chelsea, New York,
2nd ed. 1978 ; MR 80e:10003.

W. Sierpinski, A Selection of Problems in the Theory of Numbers, Pergamon, 1964.

S. Ulam, 4 Collection of Mathematical Problems, Interscience, New York, 1960.

Throughout this. volume, “number” means natural number, c is an
absolute positive constant, not neoessanly the same each time it appears,
and ¢ is an arbitrarily small positive constant. We use Donald Knuth’s
“floor” (| |) and “ceiling ([ ]) symbols for “the greatest integer not greater
than” and “the least integer not less than.”

_The notation f(x) = 0(g(x)) and f(x) « g(x) mean that there are constants
¢,. ¢, such that ¢,;g(x) < f(x) < c,g(x) for all sufficiently large x; while
f(x) ~ g(x) means that f/g— 1, and f(x) = o(g(x)) means that f/g—»O
as x — o0. o .

The book has been partitioned, somewhat arbitrarily at times, into six
sections:

A. Prime numbers

B. Divisiblity
C. Additive number theory

' D. Diophantine equations
E. Sequences of integers
F. None of the above.
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'We can partition the pos}ﬁve inte’g'eré'ihto' three classes:
“uthe unit, 1 S R ' : ; 2831

the primes, 2, 3, 5,7, 11, 13, 17, 19, 23 35, 9 pasmme PR A
the composite numbers, 4, 6, 8, 9, 10, . '

A number greater than 1 is prime if its only posmve dwxsors are 1 and it-
self; otherwise it’s composite, Primes have mterested mathematnc,xans at
least since Euclid, who showed that there were. infinitely many. . ..

Denote the nth prime by p,, e.g., p; = 2, p; = 3, pgo = 523;and the number
of primes net.greater than x by n(x), e.g., n(2) = 1, n(37) 2, n(1000) = 168.
The greatest | common. divisor, (g.c.d) of m and n. is denoted by (m,n).
If (m,n) = 1, we say that,m and n are coprime; for example (14, 15) = 1.

Dirichlet’s theorem tells us that there are infinitely many primes in
any arithmetic progression,

F

a;, a+b;a+2b, a+ 3b,.

provided (a,b) = 1. An article, giving a survey of problems about prlmes
and a number of further references, is

A. Schinzel and W. Sierpinski, Sur certains hypothéses concernant les nombres premiers,
Acta Arith. 4 (1958) 185-208 (erratum 5 (1959) 259); MR 21 #4936.

Table 7(D27) can be used as a table of primes < 1000. :

" The general problem of determining whether a large number is prime
or.composite, and in the latter case of determining its factors, has fascinated
number theorists down' the ages. With the advent of high speed computers,
considerable advances have been made, and a special stimulus-has recently

3



4 ' Unsolved Problems in Number Theory

been provided by the application to cryptanalysis. Some other references
appear after Problem A3.

Leonard Adleman and Frank Thomson Leighton, An O(n'/'%-%°) primality testing
algorithm, Math. Comput. 36 (1981) 261-266.

Leonard M. Adleman, Carl Pomerance and Robert S. Rumely, On distinguishing prime
numbers from composite numbers (to appear)

R. P. Brent, An improved Monte Carlo factorization algorithm, BIT, 20 (1980), 176—

184.

John D. Dixon, Asymptotically fast factorization of integers, Math. Comput. 36 (1981)
255-260.

Richard K. Guy, How to factor a number, Congressus Numerantium XVI Proc. 5th
"Manitoba Conf. Numer. Math., Winnipeg, 1975, 49-89.

H. W. Lenstra, Primality testing, Studieweek Getaltheorie en Computers, Stichting
Mathematisch Centrum, Amsterdam, 1980, 41-60.

G. L. Miller, Riemann’s hypothesis and tests for ptimality, J. Comput. System Sci.,

13(1976) 300-317.

J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos.
Soc. 76 (1974) 521-528.

J. M. Pollard, A Monte Carlo method for factorization, BIT 15 (1975) 331-334; MR 50
#6992.

R. Rivest, A. Shamir and L. Adleman, A method for obtaining digital signatures and
public key cryptosystems, Communications A.C.M., Feb. 1978.

R. Solovay and V. Strassen, A fast Monte-Carlo test for primality, SIAM J. Comput.
6 (1977) 84-85; erratum 7 (1978) 118; MR 57 # 5885.

H. C. Williams, Primality testing on a computer, Ars Combin. 5 (1978) 127-185. MR
80d: 10002.

H. C. Williams and R. Holte, Some observations on primality testing, Math. Comput.
32 (1978) 905-917; MR 57 #16184.

H. C. Williams and J. S. Judd, Some algorithms for prime testing using generalized
Lehmer functions, Math. Comput. 30 (1976) 867—886.

Al. Are there infinitely many primes of the form a? + 1? Probably so,
and in fact Hardy and Littlewood (their Conjecture E) guessed that the
number, P(n), of such primes less than n, was asymptotic to c/n/ln n,

2 P(n) ~ cﬁ/ln n ?

i.e., that the ratio of P(n) to y/n/In n tends to ¢ as n tends to infinity. The
constant ¢ is

. (—1)e-102
=114y p /)= n{1 = ————} ~ 1.3727
1 —>—< p—1
1 p— 1 ¥

where () is the Legendre s;ymbol (see F5) and the product is taken over
all odd primes. They make similar conjectures, differing only in the value
of ¢, for the number of primes represented by more general quadratic ex-
pressions. But we don’t know of any integer polynomial, of degree greater
than one, for which it has been proved that it takes an infinity of prime values.
Is there even one prime a® + b for each b > 0?



A. Prime Numbers 5

Iwaniec has shown that there are infinitely many n for which n* + 1
is the product of at most two primes, and his result extends to other ir-
reducible quadratics.

Ulam and others noticed that the patterns formed by the prime numbers
when the sequence of numbers is written in a “square spiral” seems to
favor diagonals which correspond to certain “prime-rich” quadratic poly-
nomials. For example, the main diagonal of Figute 1 corresponds to Euler’s
famous formula n? + n + 41.

421 420 419 418 417 416 415 414 413 412 411 410 409 408 407 406 405 404 403 402
422 347 346 345 344 343 342 341 340 339 338 337 336 335 334 333 332 331 330 401
423 348 281 280 279 278 277 276 275 274 273 272 271
424 349 282 223 222 221 220 219 218 217 216 215 214
425 350 283 224 173 172 171 170 169 168 167 166 165
426 351 284 225 174 131 130 129 128 127 126 125 124 123 122 161 208 263 326 397

427 352 285 226 175 132 97
428 353 286 227 176 133 98
429 354 287 228 177 134 99
430 355 288 229 178 135 100
431 356 289 230 179 136 101
432 357 290 231 180 137 102
433 358 291 232 181 138 103
434 359 292 233 182 139 104

96
n
72
73
74
75
76
7

gara3IN

57
78

94
69
52
43
4
45
58
™

93
68
51
42
41
46
59
80

92
67
50
49
48
47
60
81

91
66
65
64
63
62
61
82

435 360 293 234 183 140 105 106 107 108 109 110 111
436 361 294 235 184 141 142 143 144 145 146 147 148
437 362 295 236 185 186 187 188 189 190 191 192 193 194 195 196 197 252 315 386
438 363 296 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 314 385
439 364 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 384
440 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383

270 269 268 267 266 329 400
213 212 211 210 265 328 399
164 163 162 209 264 327 398

90 121 160 207 262 325 396
89 120 159 206 261 324 395
88 119 158 205 260 323 394
87 118 157 204 259 322 393
86 117 156 203 258 321 392
85 116 155 202 257 320 391
84 115 154 201 256 319 390
83 114 153 200 255 318 389
112 113 152 199 254 317 388
49 150 151 198 253 316 387

Figure 1. Primes (in bold) Form Diagonal Patterns.

The only result for expressions (not polynomials!) of degree greater

than 1 is due to Pyateckii-Sapiro, who proved that the number of primes
of the form [n°] in the range 1 <n<x is (1 +o(1))x/(1 + g)lnx if 1 <
c <12/11.

Martin Gardner, The remarkable lore of prime numbers, Scientific Amer. 210 #3
(Mar. 1964) 120-128.

G. H. Hardy and J. E. Littlewood, Some problems of ‘partitio numerorum’ III: on the
expression of a number as a sum of primes, Acta Math. 44 (1922) 1-70.

Henryk Iwaniec, Almost-primes represented by quadratic polynomials, Jnvent. Math.
47(1978) 171-188; MR 58 #5553. ]

Carl Pomerance, A note on the least prime in an arithmetic progression, J. Number
"Theory 12 (1980) 218-223.
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I 1. Pyateclm—Sap:ro On the distriblition'in sequences of ‘the fom-n [ f (rt)] Mar Sbomzk
NS\ 33(1953):559~566;-MR 15, 507. i

A2. Are there. inﬁnitely many primeé ;f the. fohh n! + 1?.The Adnly values.
of n.< 230 whieh give primes are 1, 2, 3, 11, 27,37, 41, 73, 77, 116, and 154.
It is not known-if n! — 1 or . s den ;

i=1 i £ 7k 3 Sis 450 15

*“is prime infinitely often. The oniy values of | pk < 1031 for which X 1s prime ':4
arep, =2, 3,57, 11, 31, 379, 1019, and 1021. .
e = q ‘be the least prime greater than X. Then R. F. Fortune con)ectlirés
“ that ¢'= X + 1 is prime for all k. Tt is clear that it is not ‘divisible by the
first k primes, and Selfridge observes that the'truth of the' conjecture would
- follow from one of Schinzel, that for x > 8 there is‘always a prime between
~x and x + (In x)%. The first few fortunate primes are 3, 5, 7, 13,:23,:17, 19,
1.23,.37,61, 67, 61, 71, 47, 107, 59, 61, 109, 89, 103, 79, ....., . The answers, to
the questions are probably “yes,” but it does not.seem concelvable,that such .
conjectures will come within reach either of computcrs or. of analytxcal
tools in the foreseeable future,
_ More hopeful, but still dlﬂicult' is the followmg conjecture of Erdos
“and Stewart: are 11+ 1=2,21"% 1'=3 314 1 =744 (L5 514 1="
112 the only cases where n! +1="pept,, and p,_, <n'<p? [Note that
“(a,b)y=(1,0), (1,0). (0, 1), (2,0), and(0,2) 'in ‘these five éases.] - *
Erdés also asks if there are ‘infinitely many primes p for which p —k!
‘is ‘composite for each k- such that“l < k!'< p; for example; p= 101 and *
p = 211. He suggests that it may be easier ‘to show-that’there are infinitely
many ‘integers n (/! < n:< (b+-1)!)all -of whose prime factors are’ greater.. .
. than I, and for which all the numbers n — k!(1 < k < [).are composite.
David leverman notlced that the product

= D + 1
‘ b Wy pi = g ;,,
is an integer for m = 1, 2, 3, '4 and 8 and asked 1f it ever 1sagam

I. O. Angell and H. J. Godwin, Some factorizations of 10" + 1, Math. Comput. 28 (1974)
307-308.

Alan Borning, Some results for k¥ + tand 2“3 <5 -p+ 1, .Math: Comput. 26(1972)
567-570.

Martin Gardner, Mathematical Games, Sci. Anier. 243 #6 (Dec. 1980) 18-28.

Solomon W. Golomb, On Fortune’s conjecture, Math. Mag. (to appear) -~

S. Kravitz ‘and D. E. Penney, An extension of Tnggs table; Math. Mag. 48 (1975)
92-96.

Mark Templer, On the primality of k' + land 2% 3 5 "% p + 1, Math: Comput.
34 (1980) 303-304. 3
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A3. Primes of special form have been of perennial interest, especially
the Mersenne primes 27 — 1 (p is necessarily prime, but that is not sufficient!
211 1 =2047=23 x 89) in connexion w:th perfect numbers (see Bl)
and repumits, (107 = 1)/9.

The powerful Lucas-Lehmer test, in conjunction with successive genera-
tions of computers, and more sophisticated techniques in using them,
continues to add to the list of primes for which 2? — 1 is also prime:

2,3,5,7,13,17,19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203,
2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, . . . .

Their number is undoubtedly infinite, but proof is again hopelessly beyond
reach. Suppose M(x) is the number of primes p < x for which 27 —1is
prime. Find a convincing heuristic argument for the size of M(x). Gillies
gave one suggesting that M(x) ~ ¢ In x, but some people do not believe
this. Pomerance has an argument for M(x) ~ c(Inln x)*> but he says this
doesn’t agree with the facts.

D. H. Lehmer puts S; =4, S;s, = 87 — 2, supposes that 2 — 1 is. a
Mersenne prime, notes that S, 2= 20+ 12 op 20+ 1/2 (mod 2° — 1) and
asks: which?

Selfridge conjectures that if n is a prime of the form 2* + 1 or 2% + 3,
then 2" — 1 and (2" + 1)/3 are either both prime or neither of them are.
Moreover if both are prime, then n is of one of those forms. Is this an example
of “the strong law of small numbers™?

If pis a prime, is 27 — 1 always squarefree (does it never contain a repeated
factor)? This seems to be anothet unanswerable question. It is safe to con-
jecture that the answer is “No!” This could be settled by computer if you
were lucky. As D. H. Lehmer has said abouit various factorization methods,
“Happiness is just around the corner.” Selfridge puts the computational
difficulties in perspective by proposing the problem: find fifty more num-
bers like 1093 and 3511. (Fermat’s theorem tells us that if p is prime, then
p divides 27 — 2; the primes 1093 and 3511 are the only ones less than
3 x 10° for which p? divides 27 — 2.)

The corresponding primes for (10° — 1)/9 are 2, 19, 23, 317, 1031, the
last two of which were found by Hugh Williams quite recently, subject
to final tests being completed in the last case. Repunits >1 are known
never to be squares. Are they ever cubes? When are they squarefree?

The Fermat numbers, F, = 22" + 1, are also of continuing interest; they
are prime for 0 < n < 4 and composite for 5 < n < 19 and for many larger
values of n. Hardy and Wright give a heuristic argument which suggests
that only a finite number of them are prime. Selfridge would like to see this
strengthened to support the conjecture that all the rest are composite.

Because of their special interest as potential factors of Fermat numbers,
and because proofs of their primality are comparatively easy, numbers of
the form k - 2" + 1 have received special attention, at least for small values



