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Preface

This volume contains papers presented at the International Conference on Al-
gebra and Related Areas, held in Tsinghua University, Beijing, China, during
August 18-20, 2007. The conference was dedicated to Professor Zhexian Wan in
honor of his 80th birthday. About two hundred researchers, including graduate
students and young mathematicians from China, Japan, Singapore, Australia, the
Netherlands, Italy, and the United States, participated in this conference. There
were fifteen invited lectures by well-known experts on algebraic geometry, com-
binatorics, coding theory, Lie algebras, representation theory of finite groups and
algebraic groups, vertex operator algebras and their applications.

Professor Wan’s contributions to mathematics are legendary. His extensive
research covers many areas on mathematics, such as classical groups, geometry
of matrices, finite fields and finite geometry, Lie algebras, combinatorics, graph
theory, lattice theory, coding theory and cryptology, design theory with many fun-
damental results. In classical groups, Professor Wan investigated the structure and
automorphism groups of various subgroups and quotient groups of classical groups
over fields and skew fields. In particular, he and his former students Hongshou Ren
and Xiaolong Wu proved in 1986 that all automorphisms of the two-dimensional
special linear group over an arbitrary skew field are standard, and all isomorphisms
between two-dimensional special linear groups over skew fields are standard with
only one exception. This completely solved the very difficult problem on auto-
morphisms and isomorphisms of linear groups over skew fields. In geometry of
matrices, he systematically investigated the geometry of symmetric matrices, the
geometry of alternate matrices, the geometry of hermitian and skew-hermitian
matrices, generalizing the Fundamental Theorem of Projective Geometry to the
geometry over arbitrary fields and skew fields with involution, and giving some
applications to graph theory. The study of finite geometry and its applications in
China was initiated by Professor Wan. He studied the action of various classical
groups on vector spaces over finite fields. He developed a new theory to classify
the orbits and to determine the lengths of orbits and related. He also applied these
results to combinatorial design, information security, coding theory and graph the-
ory, and obtained many important results. Besides, he gave a beautiful proof for
a graphic method for solving the transportation problem and he solved a problem
on linear shift register sequences. There is no doubt that Professor Wan is the
leader in the Chinese algebra community, and the influence of his work over the
half century will last for many years to come.
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We are very grateful to the China and U.S. National Science Foundations,
International Mathematical Union, Tsinghua University, Institute of Systems Sci-
ence of Chinese Academy of Sciences, and many individuals for the organizing and
support of this conference. We would like to sincerely thank all the participants,
speakers, and authors for all their efforts and timely submissions, thereby mak-
ing the conference a success. We appreciate the referees for their excellent review
work. Thanks also go to the Higher Education Press and the International Press
to publish these conference proceedings as one of the series Advanced Lectures in
Mathematics.

Chongying Dong

University of California at Santa Cruz
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Academy of Mathematics and Systems Science
Chinese Academy of Sciences
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Spherical Designs and Euclidean Designs

Eiichi Bannait Etsuko Bannait

Abstract

The purpose of this paper is basically to give a survey on the theory of
spherical {-designs and Euclidean t-designs. We will first recall the definitions
of spherical t-designs and Euclidean t-designs. We discuss some examples,
and look at the problem of finding and classifying tight spherical designs
and tight Euclidean designs. We plan to discuss the connection with the
cubature formulas in numerical analysis on one hand, and the connection
with groups and sphere packing problems on the other hand.

2000 Mathematics Subject Classification: primary 05E99; secondary
05899, 51M99, 62K99

Keywords: Euclidean designs, spherical designs, tight designs, association
schemes, universally optimal codes, Assmus-Mattson type theorem

1 Introduction

This paper is an extended version of the talk titled “On Euclidean #-Designs”
given by the first author at the conference in honor of Professor Zhexian Wan's
80th birthday in Beijing in August 18-20, 2007. The abstract given above reflects
the actual talk. In the talk, we discussed extensively on the connections of cubature
formulas in numerical analysis with the theory of spherical and Euclidean designs.
Since the exposition discussing this part was already written up in [9], we will not
treat this part much in this paper, but we concentrate on the new results which
were obtained just before the conference and briefly discussed in the talk.

The contents of this paper are as follows:

1. Introduction
2. Notation

! Graduate School of Mathematics, Kyushu University, Fukuoka, Japarn.
E-mail: bannai@math.kyushu-u.ac.jp

¥ Graduate School of Mathematics, Kyushu University, Fukuoka, Japan.
E-mail: etsuko@math.kyushu-u.ac.jp
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. Spherical ¢t-Designs
. Euclidean t-Designs
. Tight Euclidean 7-Designs on Two Concentric Spheres
. Tight Euclidean 9-Designs on Two Concentric Spheres
. Antipodal Spherical t-Designs of Degree s Satisfying ¢t > 2s — 3
. Antipodal Spherical 5-Designs of Degree 4
. Antipodal Spherical 7-Designs of Degree 5
10. Speculations and Concluding Remarks

© 00 N Ok W

The new results are mentioned in Sections 59 and main results are Theorems
5.1, 7.1 and 8.1. This paper is not a ultimate paper, but a working paper which
describes the ongoing research by us. We hope that this direction of the research
will reach higher level of understanding of the subjects in the near future, and we
hope this paper is useful for that purpose.

2 Notation

First we give the notation for the vector spaces of polynomials we use in this paper.
Let S~ ! be the unit sphere in the Euclidean space R™. Let

PR") = Rlz1,22,. .., Zn)

be the vector space of polynomials in n variables i, 3, ..., Zn. Let Hom;(R™) be
the subspace of P(R™) spanned by all the homogeneous polynomials of degree I.
Let

: ! (3]

P(R") = P Hom;(R") and P;(R") = @D Homy_z(R™).
=0 =0

Let Harm(R™) be the subspace of P(R™) which consists of all the harmonic poly-
nomials. Let Harm;(R™) = Harm(R™) N Hom;(R"). Let h; = dim(Harm, (R”))
for any non-negative integer l. For a subset Y C R”, let P(Y), P(Y), Pr(Y),
Homy(Y'), Harm(Y"), Harmy(Y) be the subspaces of corresponding polynomlals
restricted to Y. For example, P}(Y) = {f|y | f € P;}(R"™)}.

3 Spherical t-Designs

The concept of spherical ¢-designs was given by Delsarte, Goethals and Seidel
in [28].

Definition 3.1. (spherical ¢-designs) Let X be a finite set on the unit sphere
S§™=1 C R™. Let t be a natural number. Then with the notation mentioned above,
we say that X is a spherical t-design if the following condition is satisfied:

Sn 1| /ES” lf(a: dO’((E) IXI Z f(u)

ueX



Spherical Designs and Euclidean Designs 3
for any polynomial f(x) € P;(R™), where ¢ denotes the usual Haar measure on

the unit sphere.

They gave the following natural lower bounds for the cardinalities of spherical
t-designs.

Theorem 3.1. [28] Let X be a spherical t-design.
(1) If t = 2e, then the following holds:
n+e—1 n+e—2 o n_1
1X| > ( ) ) + ( oo ) (—dzm(Pe(S ))).

(2) If t = 2e + 1, then the following holds:

xiz2(" T (—2dimprsm)

They defined the following concept of tight spherical ¢-designs.

Definition 3.2. (tight spherical t-designs) If the equality holds in any of the
inequalities of Theorem 3.1, then X is a tight spherical t-design.

In [28], they studied the upper bounds for the cardinalities of s-distance sets
X in S™ !, Let
AX)={z y|z,ye X, z+#uy},
where & - y denote the usual inner product between the vectors =,y in R™. If

|A(X)| = s, then X C S™? is called an s-distance set. They proved the following
theorems.

Theorem 3.2. (28] Let X C S™! be an s-distance set. Then
|X] < dim(Ps(S""1))
holds. Moreover, if X is antipodal, then
1X| < 2dim(P;_,(S"71))
holds.

Theorem 3.3. [28)

. (1) Let |X| = dim(P.(5"71)). Then X is an e-distance set if and only if X is a
spherical tight 2e-design.

(2) Let |X| = 2dim(P;(S""')). Then X is an antipodal (e + 1)-distance set if
and only if X is a spherical tight (2e + 1)-design.

The existence of spherical t-designs X in S™~! was proved by Seymour-Zaslavsky
for any ¢, n and |X| if | X| is sufficiently large (see [43]). However, spherical tight
t-designs are very special and hardly exist for n > 3 or ¢ > 4. The following are
the known results about the classification of spherical tight ¢-designs at this stage
(as for more information, see {5}, [15], etc.).
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n = 2: X is a spherical tight ¢-design if and only if X is a regular (¢ +1)-gon.
1-designs: {z, —z} is a spherical tight 1-design for any @ € S™~%.

2-designs: X C S™! is a spherical tight 2-design if and only if X is a regular
simplex.

3-designs: X < 8§71 is a spherical tight 3-design if and only if X is isometric
to {£e;|1 < i < n} (cross polytope), where {ey,...,e,} is the canonical
basis of R™.

If n > 3 and X is a spherical tight ¢-design, then t =1,2,3,4,5,7,11.

The spherical tight 11-design X is unique up to isometry. That is, X is
{sometric to the set of 196560 minimal vectors in the Leech lattice in R24.

The clagsifications of the spherical tight 4-, 5-, 7-designs are still open prob-

lems. The following are the only known examples so far:

t = 4: the 27-point set on S®, the 275-point set on S?!,

t =5: the set of 12 vertices of the icosahedron on S%, the set of 56 weight
vectors of the E; root system on S®, the 552-point set on S22.

t = 7: the set of 240 vectors of the Fg root system on S7, the 4600-point set
on S22,

Euclidean t-Designs

In this section, we introduce the concept of Euclidean ¢-designs and give some
basic facts given in the papers [41], [29] and [9].

First we give some more notation. Let X be a finite set in R™ possibly con-

taining 0. Let

{ri,re,...,mp} = {[[m[[[zeX},

where (x| = o - @. Let

i = {x eR"||lz|| =7}

and X; = X NS; fori=1,2,...,p. Let w(x) be a positive real valued weight
function on X. Let w(X;) = >, x, w(z) (1 < i< p). On each §; we consider
the Haar measure o;. For S; # {0}, we assume

1Si| = /S doy(x) =" /;"_1 do(zx).

If S; = {0}, then we define

51 L f@doi(a) = £0).

Finally, let S = |J?_,;S; and we say that X is supported by the union S of p
concentric spheres, or § is the support of X.
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We define an inner product on the vector space P(R™) by

(£9) = g [ S@)(@)iot@),

We give one more notation. For any subsets X; and X; of a Euclidean ¢-design,
we define

Definition 4.1. (Euclidean t-designs) A finite subset X in R" is a Euclidean
t-design if there exists a positive weight function w(x) on X and

Xi
S 2 [ oot = 3 wiasia)

xzeX

=1
holds for any polynomial f(x) € P¢(R").

The following theorem was proved by Neumaier-Seidel [41] which gives an
equivalent condition for Euclidean t-designs (see also [6]).

Theorem 4.1. (Neumaier-Seidel) Let X be a finite set in R™. Let w be a positive
weight function defined on X. Then the following conditions are equivalent:

(1) X is a Euclidean t-design with weight w.

(2) > pex w(@)f(x) = 0 for any polynomial f € ||z||*’ Harm;(R") with1 <1 < ¢
and 0 < j < [t—;—l]

Proof. The fact that the integral of any harmonic polynomial of positive degree
on a sphere centered at the origin vanishes implies Theorem 4.1. O

By definition, the formula given by a Euclidean ¢-design is a cubature formula
on § = [JI_, S; of degree ¢ with |X| points. Since the integrals given in the
definition of Euclidean t-designs are centrally symmetric, we can apply Méller’s
method (39, 40] for the Euclidean t-designs.

Theorem 4.2. Let X C R™ be a Euclidean 2e-design supported by a union S of
p concentric spheres. Then

|X| > dim(Pe(S))
bolds.

Theorem 4.3. Let X CR™ be a Euclidean (2¢ + 1)-design supported by a union
S of p concentric spheres. Then

X[ > 2dim(P}(S)) -1 fore evenand 0 € X,
2dim(P}(S)) otherwise.

Theorem 4.2 was also proved in [29]. As for Euclidean (2e+1)-designs, Delsarte-
Seidel and also Bannai gave the same lower bound assuming X is antipodal (see
(29, 17]).

We also have the following theorem.
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Theorem 4.4. [9, Theorem 2.3.5] Let X be a Euclidean (2e+1)-design. Assume
that the following (1) or (2) holds:

(1) eiseven, 0 € X and |X| = 2dim(P:(5)) — 1.
(2) e is odd and | X| = 2dim(P(S)).
Then X is antipodal and the weight function w(x) is centrally symmetric.
We apply Moller's method further and obtain the following theorem.

Theorem 4.5. {9, Theorem 2.3.6] Let X be a Euclidean (2Ze + 1)-design. Assume
e is even, 0 ¢ X and the following conditions are satisfied: '
(1) [X[ = 2dim(P;(S5)).
(2) LetY be asubset in X. Assume @ # —y for any ¢, y € Y N L and any line
L passing through the origin. Then |Y| < § + 1.
Then X is antipodal and the weight function w{x) is centrally symmetric.
We define the tightness of Euclidean t-designs in the following way.

Definition 4.2. (tight ¢-designs on p concentric spheres) Let X be a Euclidean
t-design. Let S be the union of p concentric spheres which supports X. If one of
the following conditions holds, then X is a tight t-design on p concentric spheres:

(1) t =2e and | X| = dim(P.(9)).

(2) t=2e+1,eiseven, 0 € X and |X| = 2dim(P(S)) — 1.

(3) t=2e+1,eiseven and 0 € X or e is odd, and | X| = 2dim(P*(9)).
Definition 4.3. (tight t-designs of R™) Let X be a tight ¢t-design on p concentric
spheres. If one of the following conditions holds, then X is a tight t-design of R™:

(1) t = 2e and dim(P,(S)) = dim(P(R™)).

(2) t=2e+1 and dim(P;(S)) = dim(P:(R")).

Theorem 4.1 implies that if 0 € X C R", then X is a Euclidean ¢-design if
and only if X\ {0} is a Euclidean t-design. Therefore, if X is a tight t-design on p
concentric spheres satisfying 0 ¢ X and p < [£], then X U {0} is a tight ¢-design
on p + 1 concentric spheres. We also have the following propositions.

Proposition 4.1. [6, Proposition 1.7] Let X be a tight 2e-design of R™. If
O0€ X, theneisevenand p= 5 +1.

Proposition 4.2. [9, Proposition 2.4.5] Let X be a tight (2e 4+ 1)-design of R™.
If 0€ X, theneisevenandp= § +1.

Proposition 4.3. [9, Proposition 2.4.6] Let X be a tight (2e + 1)-design on p
concentric spheres. Then the following hold:
(1) If e is odd, then X is antipodal, 0 ¢ X, and the weight function w is centrally
symmetric.
(2) Ife is even and 0 € X, then X is antipodal and the weight function w is
centrally symmetric.

(3) Ifeiseven, 0 ¢ X, and p < § +1 (exactly speaking if Theorem 4.5(2) holds),
then X is antipodal and the weight function w is centrally symmetric.
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5 Tight Euclidean 7-Designs on Two Concentric
Spheres

In this section, we prove the following theorem.

Theorem 5.1. Any tight 7-design on two concentric spheres is similar to one of
the 7-designs whose parameters are given in the following table:

n |X| |X1| |X2| 1|72 A(Xl) A(Xz) A(Xl,Xz) wy | Wwe
2| 12 | 6(tight) [6(tight)| 1 |r | —1,+L | —r2, x1e2 | 0, +Lr (1| &
4|48 24 24 1{r|=1,0,+3|—r%0, £3r2| O, ﬂ:ﬁr 1| %
7(182|56 (tight)| 126 |1 |r| —1,+1 |-r? 0, £1r2| 0, :tVl-Er 1325

In the table given above, r # 1, and “tight” means that X; is tight as a spherical
5-design. The precise structures of the designs will be given at the end of this
section.

In Theorem 5.1, if r = 1 for n = 2, 4, then X is a spherical 7-design, however, it
is not tight as a spherical 7-design. For n = 7 and r = 1, we obtain a non-constant
weight spherical 7-design which is not tight as a Euclidean 7-design on a sphere.

In the rest of this section, we give the proof of Theorem 5.1.

Let X = X; U X, be a tight 7-design on two concentric spheres. Then Propo-
sition 4.3 implies that X is antipodal and 0 ¢ X. Let X* be any antipodal half of
X, that is, X = X" U (—X*) and X* N (—=X*) = 0. Then by definition, we have

1X*| = dim(P%(S)) = g (”*2:;5— 1) _ (n—?I:?)Jr(vlz) _ n(n? +63n+8)_

Let X = X; N X*. Then Lemma 1.7 in ({17] implies that the weight function
w(x) = w; is constant on each X;, X7 is at most a 3-distance set, and X; is at
most a 4-distance set (i = 1,2). Also, Theorem 2.3 in [17] implies that X; and
X are both antipodal spherical 5-designs, we have |X}| > (*§7) = 2t 1et

= |X7|. Then
n(n+1 n(n?+3n +8
In [17], we introduced the following set of basis for PZ(S). Namely, we defined
polynomials g ;(f|z||?) which is a linear combination of 1, [|z||?, ..., |z||¥ satis-

fying
> w@) 2P (l2l?) gug (12lf?) = 650

e X~

Let p1,1(x), . .., pu,n,(x) be an orthonormal basis of Harm;(S) = Harm,(R™) with
respect to the inner product

(p:4) = oy [, plebi@)doa),
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where h; = dim(Harm;(R™)). Let
My = {g3—21,j3-21: | 0 <1< 1,1 <4< hg_g, 0< 5 < min{l,1}}.

Then Ho U H; is a basis of P5(S). Let i(z) be the Gegenbauer polynomial of
degree [ associated to the unit sphere S™~!. We use the normalization so that
Qi(1) = hy = dim(Harm;(R")) holds. We may assume N; < Ng, w(z) =w; =1
for # € Xy and r; = 1. Let R = r3. Then the equations (3.1) in [17] implies

93,0(1°Qa(1) + g1,0(1)*Q1(1) + 91,1 (1)%Q: (1) =1, (5.1)
R’g3,0(R)*Q3(1) + Rg1,0(R)*Q1(1) + Rg11(R)*Q1(1) = 1/w2,  (5.2)

and the equation (3.2) in [17] implies
93,0(1)°Qs(@ - ¥) + 91,0(1)°Q1 (= - y) + 61,1 (1)*Qu (2 - y) = 0 (5.3)

for z,y € X with ¢ # y,

Rgso(B)?Qs(T5" ) + Raro(®?Qi (52 ) + Rara(Ry@: (F22) =0 (5.9)

for &,y € X} with  # y, and

VE' 9s,0(1 930(R)Q3(\/R ) +VRgi0(1) g10(R) @1 (:BTRy)

m .
+ \/}_391,1(1)91,1(3)@1<\/Ey) =0 (5.5)
for x € X7 and y € X3.

Let a; = 3 cx. w(®))|&}|*. Then using the formula given in [6], we obtain
the following:

1 6
anollel®) = —= = \/ A e v s T B 5)
1 6
guollzll®) = N \/6N1 + (n3 +3n2 4+ 8n — 6N )we R’ 6.9
1 6
aollel’) = =\ w i Y
2y _ — 2 _ G2
oallel®) = [ (117 - 22)
6N1(R -1
6N1 + (n® + 3n2 + 8n — 6N )wa R
6Ny + (n® 4+ 3n2 + 8n — 6N )ws R 59
Niws R(R = 1)2(n® + 3n% 4 8n — 6Ny) 9
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By substituting these formulas, (5.1) and (5.2) both imply
wa(Ny — n)(6Ny — n3 — 8n — 3n?)R3 — N1 (6N; — 2n — 3n? — n3) = 0.
Since Ny = | X}| = ﬂ’;_*‘ﬁ = n+ 1, we obtain

Ny (6N; — 2n — 3n? — n?)

= . 5.10
w2 (N1 —n)(6N; — n3 — 8n — 3n2)R3 (5.10)
Now (5.3), (5.4) and (5.5) imply
Ni{n + 4)(n + 2)a®
— (3(n +2)N; + (6N; — 3n? — 8n — n®)wrR¥) a =0, (5.11)

waR(n + 4)(n + 2)(n® + 8n + 3n? — 6N, 53
+(3(n+2)(6N1 —n® — 8n — 3n®)woR® +36N1) =0,  (5.12)
(n+2)y* —3Ry =0, (5.13)

where o € A(X7), B € A(X3) and v € A(X}, X5). Then (5.10) with (5.11), (5.12)
implies

(n+2)(Ny ~n)a® + (2n — 3N; +n?)a =0, (5.14)
(n+2)(6N; — n® — 3n% — 2n)3%
~3(6N; — n® —4n — n?)R28 = 0. (5.15)

Since X = X; U X, is a tight 7-design on two concentric spheres, X is an-
tipodal. Moreover, X; and X, are antipodal spherical 5-designs. Both are at
most 4-distance sets. Hence, A(X1) C {0, a, —1}, A(X2) C {0, 8, —R} and
A(X,,X9) C {0, £, —\/R}, where o is the positive solution of (5.14), 8 is the
positive solution of (5.15), and ~ is the positive solution of (5.13).

Proposition 5.1. Definitions and notation are as given before. Then the follow-
ing hold:
(1) If Xy is a spherical tight 5-design and n > 4, then L and %:— are integers.

(2) If X; is not a spherical tight 5-design, then ;1; and %:— are integers.

Proof. (1) If X; is a tight spherical 5-design and n > 4, then N; = i";—l) and
X1 is of degree 3, i.e,, A(X1) = {-1, a, —a} and 1 is an integer (see [11, 12]).
On the other hand,

_n(*+3n+8) n(n+1) nn2+5)  nn+1)

2 6 R

holds. Hence, X, is not a tight spherical 5-design. Therefore, X, is of degree 4
and A(Xz) = {—R, 8, -8, 0}. Then Proposition 8.1(1) implies that X3 is a
strongly regular graph. If X3 is a conference graph, then Proposition 8. 1(3) implies
N3 = n? +n — 1. Hence, we must have ﬂ%@ =n?+4+n—1. Son = 6. However,
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there is no spherical tight 5-design in R®. This contradicts the assumption that
X, is a tight spherical 5-design. Hence, X5 is not a conference graph. Therefore,

Proposition 8.1(2) implies that %; is an integer.
(2) In this case, both X; and X are of degree 4. Therefore, X and X;
are strongly regular graphs. If X} is a conference graph, then Proposition 8.1(3)

implies that |[X{| = Ny =n?+n—1and o? = (37%1—;)1% On the other hand, (5.14)
implies
2 3Ny —n?-2n 2n+3

T mt2)(Ni-n) m+Dn+2)
This is a contradiction. Hence, X7 is not a conference graph. If X7 is a conference

graph, then N, =n? +n — 1 and %; = %11—“;)1% Thus,

n(n? + 3n + 8)

2 _
Ny = _N2=(n+l)(n 4n—|—6)'

6 6
Hence, (5.15) 1mp11es —n%% This is impossible. Therefore, X1 and
X5 are not conference graphs. Then Proposition 8.1(2) implies that _5 and £ 777
are integers. O

Proposition 5.2. Notations are given as before.

(1) If Ny = M and n > 4, then v/n + 2 and m%(zn)—(_%%—ll are integers.

(2) If Ny > ﬂ"—Hz then ("+2)(TLN1_2Z) and (61\;‘@;?:222_;21@};;’ 2 are integers.

Proof. Proposition 5.1, (5.14) and (5.15) imply the proposition. O

Proposition 5.3. Notations are given as before.

(1) Assume n > 4. Then v/n + 2 and ﬁ"TWL(zT%E"l—")Hl are both integers if and only if
n="7.

(2) Assume ﬂnz—ﬂl < N1 € 15n(n? +3n+8). Then

(n+2)(Ny —n) and (6N; —n?® — 3n? — 2n)(n + 2)
3N; —n? —2n 3(6N1 — n® — 4n — n?)

are both integers if and only if n = 4, 8, 10, 16 with the values of Ny listed
below:

n|(4|8]10} 16
N |[12]64,70256

Proof. (1) We have

(n+2)(n+1) n+4 2
3n—-1) 3 o1

If n > 8, then nT < % < % Therefore, ("—;&M_%Q cannot be an integer. Since

n + 2 must be the square of an integer and n > 4, we must have n = 7.



