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PREFACE

The aim of this book is to provide a systematic and practical
account of methods of integration of ordinary and partial differential
equations based on invariance under continuous (Lie) groups of trans-
formations. The goal of these methods is the expression of a solution
in terms of gquadrature in the case of ordinary differential equations
of first order and a reduction in érder for higher order equations.
For partial differential equations at least a reduction in the number
of independent variables is sought and in favorable cases a reduction
to ordinary differential equations with special'solutions or
quadrature.

In the last century, approximately one hundred years ago,

Sophus Lie tried to construct a general integration theofy,;in the
above sense, for ordinary differential equations. Following Abel's
approach for algebraic equations he‘studied the invariance of ordinafy
differential equations under trahsformations. In particulaf, Lie
introduced the study of continuous groups of transformations of
~ordinary differential equations, based on the infinitesimal properties
of the group. 1In a sense the theory was completely successful. It
was shown how for a first-order differential equation the knowledge

of a gréup leads immediately to quadrature, and for a higher order
equation (or system) to a reduction in order. In another sense this
theory is somewhat disappointing in that for a first-order differ-
ential equation essentially no systematic way can be given for finding
the groups or showing that they do not exist for a first-order

differential equation.

Lie also investigated thoroughly first-order partial differ-
ential equations which are essentially equivalent to systems of

first-order ordinary differential equétions by the theory of



vi PREFACE

characteristics. He also made a preliminary investigation of some
second-order equations, for example, the heat equation, but did not
develop the integration theory. During the last century these methods
have been developed by various mathematicians, engineers, and
physicists. A summary of the mathematical approach based on in-
finitesimal transformations is given in a recent Russian book,

Group Properties of Differential Equations, by L. Ovsjannikov,.

In the first part of this book the material on ordinary differ-
ential equations is reproduced in detail. A typical result is

(1.14-2): the criterion that a first-order equation

Qx,y,y'}) =0

admit a given group, defined by infinitesimal generators

. N an 3N
{€(x,¥), nix,y)} is thatﬁa—;+n§—y-+n'm=o on Q= 0, for

all {(x,y) where
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From a knowledge of the group the (general) solution can bhe expressed
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by quadrature.

In the second part of the book this method is ext;nded to
partial differential equations and several other connections are made.
First tﬁe concept of the extended infinitesimal transformation is
developed for several variables. It is next shown how invariance
under a group can be used to reduce the number of independent
variables. 'he resulting solutions are connected with the usual
"similarity solutions" of partial differential equations. Since these
solutions are sometimes obtained by physical dimensional analysis

§2.5 aiscusses the connection between transformation theory

and that method. A principal example which is treated here is the
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construction of the general similarity solution of the heat equation.
Other examples, including some with non-linearities and some with.
boundary conditions are sketched but, of course, no complete catalog
can be given.

In view of the pioneering work of Sophus Lie in pointing out
the importance and use of infinitesimal transformations, the authors
would respectfully like to dedicate this book to his memory.

The authors are indebted to F, Milinazzo for carefully reading
drafts of the manuscript and suggesting numerous corrections and
clarifications. Special thanks are due to Mrs. Vivian Davies and
Mrs. Yit-Sin Choo for patiently deciphering the authors' handwriting
in typing several drafts of the manuscript. The authors appreciate

the technical assistance of the staff at Brown University.

George W, Bluman, Vancouver
and

Julian D. Cole, Los Angeles
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INTRODUCTION

The work presented here falls naturally into two parts; the aims
and partial contents of these parts is now sketched for purposes of

orientation.

1. Ordinary Differential Equations

For ordinafyfdifferentiai,équations the aim is. a theory of inte-
gxation_or reduction‘to quadratures. For first-order equations this
means that special cases can. be reduced to esséntially the same case,
one of quadfature. The canohical case of qiddrature occurs when'a

variable is missing. If the general equation is

F[ XY, g] =0 (1

the special case is

JEE I o (2)

For one of the (possibly mapy) branches of (2) we can write

Waomy, 1)
and the general solution is
x : _
:X,ﬁ-J G(p)Ag + o, o = const.. R £ )
X
o

In the sense repregented by (3) and (4) the gﬁgblem ipj;ggardgd as ‘
solved or reduced to quadrature. In this sepse the theory acopmplishes
all that can reasonably be expectéd of it.

ot s

For higher order equations or systems the aim is the ;edndtion;

|




2 INTRODUCTION

of the problem to lower order plus a suitable number of quadratures,

and this can be carried out for a definite class of problems.

2. Partial pDifferential Equations

For first-order partial differential equations we take the
(restricted) point of view that a sufficiently complete integration
theory is given by the theory of characteristics. This connects the
solution of partial differential equations with the integration of
systems of ordinary differential equations and hence with results of
part 1. It may, however, be useful to look at some first order equa-
tions directly from the point of view of transformations and invariance.

For hicher order equations or systems the aim is a reduction in
the number of variables. A typical result is the statement that a
solution wu(x,y,t) of a particular P.D.E. in three independent

variables must be representable as
ulx,y.t) = 1 Fl X X (5)
\ ’ 14 t t ’ t .

This procedure can possibly be repeated more than one time. The
special case when a partial differential equation contains only two
independent variables is particularly important since the problem is
reduced to an ordinary differential equation, Further, the methods
of part 1 may be applied. In many physical problems of interest the
resulting equation which needs to be studied (together with a suitable
number of quadratures) is of first order. 1In this favorable case the
structure of all possible solutions in the phase plane provides complete
information on the stfucture of a class of solutions to the original
partial differential equation. It also may provide the basis for a
method of numerical integration.

Another method, which can be used to obtain the same results in

special cases, arises not directly from transformation theory but rather
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from dimensional analysis. The basic idea is that all phvsical
problems must be expressible in dimensionless variables. This idea
is applied to the variables entering a problem for a partial differ-
ential equation. For example if (x,y), some independent variables,
which are space coordinates with the physical dimensions of "length",
enter the problem, then it can be concluded that only the combination
(x/y) (or equivalent) can enter the problem. Evidently, this
represents a reduction in the number of variables. However, it should
be remarked that the failure of dimensional analysis to predict
similarity (i.e., a reduction in the number of essential variables)
does not necessarily rule out similarity for the problem. The
connection between dimensional analysis and similarity is discussed
later.

What has been outlined above is the main content of this book.
However, various related topics which enter naturally are discussed as
the opportunity arises. Among these are asymptotic and local behavior,
superpogition of similarity solutions for linear cases.

Finally, it should be remarked that the methods used apply
equally well to non-~linear and linear cases. The ideas used represent
one of the few systematic methods of attacking non-linear problems,

with an eye to obtaining exact solutions.



1. ORDINARY DIFFERENTIAL EQUATIONS

1.0. oOrdinary Rifferential Equations

The essential ideas of the method occur for first-order equa-
tions and these are discussed first. For first-order equations of
first degree, which form the main subject matter of the first part of
this book, the difference between the case when a variable is missing

in the right hand side and the general case should be noted:

g% = F(x,y) general, (1.0~-1)
%¥ = F(x) y missing. (1.0-2)

In the general case the complete integration is represented by all the
integral curves in the (x,y) plane, one curve passing through each
nonsingular point (Fig. 1.0-1) according to the local direction field
at each point P; these form ! (number of) curves.(l) Their con-
struction demands in general ol integrations.

In the special case (1.0-2), again all the curves are needed
for the complete solution. However, the complete solution, repre-
senting all the integral curves, is given indirectly by integration

x
y = f F(g)dg + a, a = const, (1.0-3)
%o
Thus, essentially only one integration is needed; the problem is one
of guadrature. This fact is reflected in the geometric properties of
Fig. (1.0-2). The slope of each integral curve is the same at a

fixed value of x. The integral curves are thus congruent and a

(1)01d fashioned notation: =l = single infinity of curves

fcharacterized by all continuous values of one parameter) .
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translation in the y~direction brings one into another. Thus, we can

gummarize the special properties of this case:

under the transformation y -+ y + R:
- integral curves -~ integral curves (1.0-4)

- the differential equation (1.0-2) is invariant

The reduction to quadrature is the aim of the transformation
theory for these first-order equations. According to the above re-
marks we might expect that invariance under transformation is the
basic property which allows a reduction to quadrature. .That this is
so is illustrated by the special example of the next seotion. It is
in fact possible to connect all transformations and invariances with

»
that of (1.0-4).

l1.1. Example: Global Similarity Transformation,
Invariance and Reduction to Quadrature

This-section demonstrates, in a special case, how invariance
under a transformation can be used to reduce a problem to quadrature.

Consider

%}% = F(x,y) (1.1-1)

F(x,y) is at first arbitrary but will soon be restricted by trans-
formation requirements. Assume that the differential equation is

invariant under the special transformation

0 <a, B<w (1.1-2)

Y*

By

(a,B)(l) are the parameters of the transformation. We consider the

Greek letters will be used to denote parameters, as far as possible.



1.1. Global Similarity Transformation

transformation of the original space (x,y) to-an image space
(x*,y*); this can also be thought of as the mapping of the plane in-
to itself. The transformation assigns an image point P*(x*,y*) to
each point P(x,y) in the plane and vice-versa. The special trans-
formation (1.1-2;, is a stretching or similitudinous transformation.
a =8 =1 1is the identity which is included in all transformations.
A direction field at P* is also assigned by the transformation of

the differential equation

[oN)
58
#
Lo
]
—_———
QIX

' %: ]' (1.1-3)

To the integral curve of (l1.1-1) through P corresponds an integral
curve of (1.1-3) through p*.

Now we can define invariance precisely: the differential

equation (1.1-1) is said to be invariant under the transformation

(1.1-2) when the differential equation reads the same in the new

coordinates. That is, the right hand side of (1.1-3) is equal to

F(x*,y").
g i: %: = F(x*,v*) for invariance (1.1-4)
a a ' ) )

We will assume that F is such that (1.1-1) is invariant.

Before considering the restrictions of F(x,y) 1let us consider
some other consequences of invariance. Consider a definite integral
curve

y = f(x) (1.1-5)

in the original space:; that is, f(x) is such that £'(x) = F{(x,f(x))
for some'range of x. The fact that the equation is invariant implies
that the same curve in the (x*,y*) space is an integral curve of

(1.1-3)
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v* = E(x*)- (1.1-6)

But each integral curve in the "star" space is the image of an
integral curve in the original space. Upon transforming (1.1-6) back
to the original (x,y) space we have, as integral curves (for

various a,B)

y = % f (ax) - (1.1-7)
Thus, as a consequence of invariance, we can say that any integral
curve in the original space such as (1.1-5) is a member of some
family, such as (1.1-7). The identity member of this family has
a =8 = 1. With the aid of (1.1-7) we can actually find the integral

curve passing through any point of the plane. Thus, essentially only

one integral curve needs to be calculated; the problem should be

reducible to quadrature.

A procedure for doing this is now indicated. First, we find

the form of F(x,y). Two cases need to be considered:

(i) «,B independent parameters (the differential equation is
invariant under a two parameter group); rewrite the in-

variance condition (l1.1-4) as

BF(x,y) = aF (ax,By) . (1.1-8)

Then 3/3a implies

0 = F(ax,By) + ox a—a(% (ax, By)
or (1.1-9) (1

0 = F(x*,y*) + x* %E: (x*,v*) .
x" .

l B

( )The ngtation 3/3(1) means the partial derivative with respect to
the first argument of the function; 3/3(2) denotes the partial
derivative with respect to the second argument, etc.
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Direct integration yields

% _glyh) .
F(x",y") o

Thus, the basic functional equation (1.1-8) becomes

Bg(y) = g(By).

3/38 of this functional equation yields

gly) = yg'(By) = —[13— g (8y)
or
gt .1
g(y*) y*
The solution of (1.1-12) is
gly*) = by* b = const.

and the resulting functional form of F is
F(x,y) = b % .

For this special differential equation

-0y

(1.1-10)

(1.1-11)

(1.1-12)

(1.1-13)

(1.1-14)

a separation of variables provides the reduction to quadrature.

(i1) B8 = B(a) (the differential equation is invariant under

a one parameter group).

The functional form of the dependence B8(a)

is not arbitrary

but must be found in the course of finding the functional form of F.

The basic functional equation (1.1-4) is now

B(a)F(x,y) = aF(ax,B(a)y)

(1.1-15)



