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Preface

A lot has been written about static flow networks, where repairs and flow disruption
caused by failures of components are not considered. Static flow networks have
numerous applications and currently they are an inextricable part of the modern educa-
tion in computer algorithms and operational research. However, despite the years of
intensive research on static flow networks, a common fundamental flaw of the classi-
cal methods for maximising the throughput flow has been identified. The classical
algorithms for maximising the throughput flow leave undesirable directed loops of
flow in the optimised networks. These parasitic flow loops are associated with wastage
of energy and resources and increased levels of congestion in the optimised networks
and are associated with big financial losses for the affected sectors of the economy.

Furthermore, an important aspect of real flow networks is that their flows are
often disturbed by particular contingency events, for example, overloading, conges-
tion, failures and sudden fluctuations in flow generation and demand. Indeed, in
many real flow networks (electrical, production, transportation, manufacturing and
computer networks, etc.) components fail or sections of the network suffer conges-
tion or overloading. These events disturb the network flows and in this sense, it can
be stated that almost all real networks are, in fact, networks with disturbed flows.

After a contingency event, for example, a congestion or failure, it is important
to redirect the flows immediately through alternative paths, so that a new maximum
of the throughput flow is quickly reached.

At the same time, on a failure of a component from a production line, computer
network, power supply system or water supply system, a repair is initiated and after
a particular delay, the failed component is returned to operation. Similarly, after an
accident on a road section, a clearing operation is initiated and after a certain delay,
the road section is returned to operation at its full capacity. Consequently, it can be
stated that real flow networks are almost always repairable networks. The research
on networks with disturbed flows and repairable flow networks is an important
emerging research area, part of the modern network science.

The potential application of repairable flow networks is huge: oil and gas pro-
duction networks, computer networks, power networks, telecommunication net-
works, transportation networks, water supply networks, emergency evacuation
networks, supply networks, etc. Repairable flow networks can even be used for
conducting reliability analysis of large and complex systems.

An important problem associated with repairable flow networks delivering a par-
ticular commodity (gas, oil, electrical power, data, goods, etc.) is the adverse effect
of component failures and unavailability of generation sources on the network per-
formance. The extent of this adverse effect is measured by the probability of
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having a particular level of the throughput flow on demand or by the probability of
having a particular expected level of total throughput flow, during a specified time
interval. These performance measures are commonly specified in contracts and are
a key for evaluating the performance and quality of service of flow networks. They
are used for comparing alternative solutions and for making an informed selection
among competing network topologies. This is the main reason why oil and gas pro-
duction companies, for example, have already invested in software for simulating
the performance of their repairable oil and gas production systems and determining
their production availability. There is also an emerging demand for such software
tools from the telecom sector, power distribution sector and distribution logistics
sector.

As a result, failures, repairs, fluctuating supply and demand and the flow reopti-
misation after these events are an essential part of the network analysis, optimisa-
tion and real-time management. This important aspect of the network flow analysis
has not yet received the attention it deserves.

Although the analysis and optimisation of networks with disturbed flows and
repairable flow networks is extremely important, currently no books are available
to provide the much-needed support for researchers and practitioners. By introduc-
ing the subject ‘networks with disturbed flows and repairable flow networks’, this
book takes the flow networks a step further. The book has been written with the
intent to fill the existing gaps, by developing the theory, algorithms and applica-
tions related to networks with disturbed flows and repairable flow networks. The
research area Networks with disturbed flows and repairable flow networks is new
and this is the first book covering the subject.

The theoretical results presented in this book form the foundations of a new gen-
eration of ultra-fast algorithms for optimising networks with flows disturbed by
failures, congestion or sudden change in demand or flow generation. The high
computational speed creates the possibility of optimal control of very large and
complex networks in real time. This is of particular importance to large and com-
plex power distribution networks, where the optimisation of the power flows after
overloading or failure of a power line needs to be done within the range of millise-
conds. Reoptimising the network flows in real time significantly increases the yield
from real production networks and reduces to a minimum the lost flow and disrup-
tion caused by failures.

The initial chapters introduce basic concepts, conventions and techniques related
to static flow networks, where no contingency events disturbing the edge flows
exist. The concepts, results and techniques discussed are necessary for introducing
the theory of repairable flow networks and networks with disturbed flows.

In order to correct the common flaw of existing classical methods for maximis-
ing the throughput flow, an efficient algorithm for identifying and removing
directed loops of flow has been developed.

New efficient algorithms for maximising the flow in static, single commodity
and multi-commodity networks have also been proposed. In this respect, a new fun-
damental theorem referred to as ‘dual network theorem for static networks’ has
been stated and proved. The theorem states that the maximum throughput flow in
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any static network is equal to the sum of capacities of the edges coming out of the
source minus the total excess flow at all excess nodes plus the maximum through-
put flow in the dual network. Consequently, a new algorithm for maximising the
throughput flow in a network has been proposed. For networks with few imbal-
anced nodes, the proposed algorithm outperforms all classical algorithms for
maximising the throughput flow in a network. An additional stage in the proposed
new algorithm guarantees that no parasitic directed loops of flow are left after the
throughput flow maximisation.

It is also shown that the computational speed related to determining the maxi-
mum throughput flow in a network with merging flows can be improved enor-
mously if the tree topology of the network is exploited directly. Accordingly, for
networks with merging flows, an efficient algorithm with linear running time in the
size of the network has been proposed for maximising the throughput flow. A theo-
rem which provides the theoretical justification for the proposed algorithm has also
been stated and proved.

Chapter 5 introduces the theory of networks with disturbed flows and discusses
several fundamental results referred to as ‘dual network theorems for networks
with disturbed flows’. One of the results states that in any network with maximised
throughput flow, the new maximum throughput flow after choking the flows along
several edges is equal to the maximum throughput flow in the original network,
minus the total amount of excess flow at the excess nodes, plus the maximum
throughput flow in the dual network.

On the basis of this result, very efficient augmentation algorithms have been
proposed for restoring the maximum possible throughput flow in a network with
disturbed flows after an edge failure. The proposed algorithms are the fastest avail-
able methods for reoptimising the throughput flow after edge failures. In many
cases, the average running time of the proposed algorithms is constant, independent
of the size of the network or varies linearly with the size of the network. It is
shown how the developed algorithms can be applied for optimising the perfor-
mance of gas production networks.

The high computational speed of the proposed reoptimisation algorithm makes it
suitable for optimising the performance of large and complex repairable flow net-
works in real time. Essentially, the proposed algorithm is a very efficient decentralised
algorithm for achieving a global maximum of the throughput flow in a network by
independent distributed agents, which possess local knowledge about the network
topology but do not necessarily possess knowledge about the entire network topology.
Consequently, a very important application of the proposed algorithm has been found
in the high-speed control of active power distribution networks after a failure or
congestion of power lines or after a sudden change in demand and power generation.

In Chapter 9, an important result has been stated regarding the average produc-
tion availability of repairable flow networks composed of independently working
edges, whose times to failure follow the negative exponential distribution. The
average production availability is the ratio of (i) the average of the maximum
throughput flow on demand calculated after removing the separate edges with prob-
abilities equal to their unavailabilities, to (ii) the maximum throughput flow in the
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absence of failures. For the first time, the new algorithm for determining the
production availability, created the basis of extremely fast solvers for the produc-
tion availability of large and complex repairable networks, whose running time is
independent of the length of the operational interval, the failure frequencies of the
edges or the lengths of their repair times.

A discrete-event solver for determining the production availability of repairable
flow networks with complex topology has also been constructed, where the times
to failure of the edges could follow any specified distribution. The proposed
discrete-event solver maximises the throughput flow rate in the network upon each
component failure and return from repair. Maximising the flow rate upon each
component failure and return from repair, ensures a larger total throughput flow
during a specified time interval.

Methods for assessing the reliability of the throughput flow in a network with
complex topology occupy a central space in the book. These methods use Monte
Carlo simulation techniques to estimate the probability that the throughput flow
will be equal to or greater than a specified threshold value and are superior to alter-
native methods based on minimal paths and cut sets. They can be applied for asses-
sing the quality of service of computer networks and telecommunication networks.
Analytical methods for determining the probability of a source-to-sink flow on
demand, have also been introduced and discussed.

By using a specially designed software tool, a study has been presented on the
link between performance, topology and size of repairable flow networks. The
topology of repairable flow networks has a significant impact on their performance.
Two networks built with identical type and number of components can have very
different performance levels because of slight differences in their topology.

In Chapter 11, a new topology optimisation algorithm has been proposed for
achieving a maximum throughput flow and a maximum production availability
within a specified budget for building the network. The algorithm incorporates an
efficient search in the space of available alternatives, based on combining the
branch and bound method and pruning of the full-complexity network. The algo-
rithm always determines the exact solution and is considerably faster than exact
algorithms based on a full exhaustive search. At the heart of the optimisation pro-
cedure is a production availability algorithm, whose running time is independent of
the length of the operational interval, the failure frequencies of the components, or
the lengths of their repair times.

The topology optimisation method has also been applied to reliability networks
of safety—critical systems. An important problem has been solved, related to how
to build within a fixed budget a safety—critical system, characterised by the smal-
lest risk of failure. The topology optimisation of reliability networks creates the
opportunity of increasing the safety margin of common safety—critical systems
without increasing the cost of current designs.

Substantial space in the book has been allocated on flow optimisation in non-
reconfigurable repairable flow networks. A number of theorems related to non-
reconfigurable repairable flow networks have been stated and proved. For a specified
source-to-sink path, the difference between the sum of the unavailabilities along its
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forward edges and the sum of the unavailabilities along its backward edges has been
referred to as path resistance. This property plays an important role in modelling the
properties of non-reconfigurable flow networks. In a non-reconfigurable flow net-
work, the absence of augmentable cyclic paths with a negative resistance is a neces-
sary and sufficient condition for a minimum lost flow due to edge failures.

For a given source-to-sink path, the difference between the sum of the hazard
rates of its forward empty edges and the sum of the hazard rates of its backward
empty edges is the flow disruption number of the path. In non-reconfigurable net-
works, the absence of augmentable cyclic paths with a negative flow disruption
number is a necessary and sufficient condition for a minimum probability of undis-
turbed throughput flow by edge failures.

Reliability networks, their design and analysis also received attention. It is
shown that a reliability network can be interpreted as a repairable flow network.
The probability of system operation is equal to the probability that, on demand, a
path with unit flow can be augmented from the source to each of the end nodes.
This analogy permits reliability networks to be analysed with the tools developed
for repairable flow networks.

Unlike the repairable flow networks, the reliability network does not necessarily
match the functional diagram of the modelled system. This is the reason why along-
side the analysis of reliability networks an extended discussion has been provided on
building reliability networks. It is demonstrated that contrary to a widespread belief,
complex reliability networks that cannot be represented with series and parallel
arrangements are common. Even simple mechanical systems may have reliability net-
works that cannot be reduced to a combination of series and parallel arrangements.

It is also shown that the traditional presentation of reliability networks, based on
a single start node, single end node, undirected edges and edges with two end
points, is insufficient for a correct representation of the logic of operation and fail-
ure of some systems. Undirected and directed edges, multiple end nodes and
‘edges’ with multiple end points are all necessary to represent correctly the logic of
operation and failure of these systems.

A powerful algorithm for analysis of reliability networks, which avoids the
drawbacks of commonly accepted methods based on cut sets or path sets, has also
been introduced.

Finally, a method has been proposed for virtual accelerated testing of complex
repairable networks. As a result, the life of a complex repairable flow network
under normal operating conditions can be extrapolated from the accelerated life
models of its edges and nodes, at elevated levels of the acceleration stresses (tem-
perature, humidity, pressure, vibrations, speed, concentration, corrosion activity,
etc.). The proposed method makes building test rigs for complex flow networks
unnecessary, which can be an expensive and a very difficult task. It also reduces
drastically the amount of time and resources needed for accelerated life testing of
complex flow networks.

Building a model of a complex repairable network based on the accelerated life
models of its components also reveals the impact of the acceleration stresses on the
availability of the network.
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The algorithms in the book have been embedded in a software tool with graphics
user interface through which the network is drawn on screen by the user and the
parameters characterising the components are specified. Functions have been pro-
vided for quickly transferring parameters from one edge/node to another. Nodes
and edges can be easily deleted and added, which permits easy modifications of an
existing network. This is particularly useful for comparing quickly the performance
of derivative network topologies and selecting the topology with the best
performance.

In conclusion, I gratefully acknowledge the financial support received from The
Leverhulme Trust, with the research grant F/00 382/] ‘High-speed algorithms
for the output flow in repairable flow networks’. I also acknowledge the help of
Mr Paul Hansford and Mr Calvin Earp in developing the graphics user interface
of the software tool; the helpful discussions with clients from oil and gas compa-
nies, the helpful comments from colleagues in the Department of Mechanical
Engineering and Mathematical Sciences at Oxford Brookes University and from
overseas colleagues.

I acknowledge the editing and production staff at Elsevier for their excellent
work and in particular, the help of Ms Tracey Miller, Dr Erin Hill-Parks and
Mr Stalin Viswanathan.

Finally, I acknowledge the immense help and support from my wife Prolet,
during the preparation of this book.

I hope that the findings, algorithms and examples presented in this book will
provide key knowledge, useful techniques and tools to mathematicians, computer
scientists, engineers, and operators of power networks, computer networks and
production networks. The book has already been used with success as a basis of the
module ‘Repairable flow networks and networks with disturbed flows’ taught by
me to final year students in mathematics at Oxford Brookes University, the
United Kingdom. The chapter related to building and analysing reliability networks
constitutes an essential part of the module ‘Engineering Reliability and Risk
Management’ taught by me to postgraduate students in Oxford Brookes University.
I also believe that the book will strongly complement the education in computer
algorithms, operational research methods and network science.

Oxford, September 2012
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