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Preface

The ISFMA-CIMPA School on “Differential Geometry: Theory and
Applications” was held on 07 August — 18 August 2006, in the building of
the Chinese-French Institute for Applied Mathematics (ISFMA), Fudan
University, Shanghai, China. This school was jointly organized by the
ISFMA and the CIMPA (International Centre for Pure and Applied
Mathematics), Nice, France. About sixty participants from China, Hong
Kong, France, Cambodia, India, Iran, Pakistan, Philippines, Romania,
_ Russia, Sri-Lanka, Thailand, Turkey, Uzbekistan and Vietnam attended
this highly successful event.

The first objective of this school was to lay down in a self-contained™
and accessible manner the basic notions of differential geometry, such'as
the metric tensor, the Riemann curvature tensor, the fundamental forms
of a surface, covariant derivatives, and the fundamental theorem of sur-
face theory etc. Although this field is with good reasons often considered
as a “classical” one, it has been recently “rejuvenated”, thanks to the
manifold applications where it plays an essential role.

The second objective of this school was to present some of these
applications, such as the theory of linearly and nonlinearly elastic shells,
the implementation of numerical methods for shells, and mesh generation
in finite element methods.

To fulfill these objectives, four series of lectures, each series compris-
ing ten 50min-lectures, were delivered under the following titles: “In-
troduction to differential geometry”, “Introduction to shell theory”, “A
differential geometry approach to mesh generation”, and “Numerical
methods for shells”. This volume gathers the materials covered in these
lectures. As such, this volume should be very useful to graduate students
and researchers in pure and applied mathematics.

The organizers take pleasure in thanking the various organizations for
their generous support: The ISFMA, the CIMPA, the French Embassy
in Beijing, the Consulate General of France in Shanghai, the National
Natural Science Foundation of China, Fudan University, Higher Educa-
tion Press and World Scientific. Finally, our special thanks are due to
Mrs. Zhou Chun-Lian for her patient and effective work in editing this
book.

Philippe G. Ciarlet and Ta-Tsien Li
February 2007
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An Introduction to Differential Geometry
in R3

Philippe G. Ciarlet
Department of Mathematics, City University of Hong Kong

83 Tat Chee Avenue, Kowloon, Hong Kong, China
E-mail: mapgc@cityu.edu.hk

Introduction

These notes! are intended to give a thorough introduction to the basic
theorems of differential geometry in R3, with a special emphasis on those
used in applications.

The treatment is essentially self-contained and proofs are complete.
The prerequisites essentially consist in a working knowledge of basic no-
tions of analysis and functional analysis, such as differential calculus,
integration theory and Sobolev spaces, and some familiarity with ordi-
nary and partial differential equations.

In Part 1, we review the basic notions, such as the metric tensor
and covariant derivatives, arising when a three-dimensional open set is
equipped with curvilinear coordinates. We then prove that the vanishing
of the Riemann curvature tensor is sufficient for the existence of isomet-
ric immersions from a simply-connected open subset of R® equipped with
a Riemannian metric into a three-dimensional Euclidean space. We also
prove the corresponding uniqueness theorem, also called rigidity theo-
rem.

In Part 2, we study basic notions about surfaces, such as their two
fundamental forms, the Gaussian curvature, and covariant derivatives.
We then prove the fundamental theorem ‘of surface theory, which asserts
that the Gauss and Codazzi-Mainardi equations constitute sufficient con-
ditions for two matrix fields defined in a simply-connected open subset of
R? to be the two fundamental forms of a surface in a three-dimensional
Euclidean space. We also prove the corresponding rigidity theorem.

1With the kind permission of Springer-Verlag, these notes are extracted and
adapted from my book “An Introduction to Differential Geometry with Applica-
tions to Elasticity”, Springer, Dordrecht, 2005, the writing of which was substantially
supported by two grants from the Research Grants Council of Hong Kong Special
Administrative Region, China [Project No. 9040869, CityU 100803 and Project No.
9040966, CityU 100604].
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1 Three-dimensional differential geometry

Outline

Let Q be an open subset of R3, let E® denote a three-dimensional Eu-
clidean space, and let ® : Q — E2 be a smooth injective immersion. We
begin by reviewing (Sections 1.1 to 1.3) basic definitions and properties
arising when the three-dimensional open subset @(f2) of E? is equipped
with the coordinates of the points of {2 as its curvilinear coordinates.

Of fundamental importance is the metric tensor of the set ©(Q),
whose covariant and contravariant components g;; = g;; : 8 — R and
g% = g’* : @ — R are given by (Latin indices or exponents take their
values in {1,2,3}):

9i; =9;-g; and g = g* - g’, where g, = 8;© and g’ - g, = 4.

The vector fields g, :-Q@ — R3 and g7 : Q — R3 respectively form the
covariant, and contravariant, bases in the set ©(f2).

It is shown in particular how volumes, areas, and lengths, in the set
©(Q) are computed in terms of its curvilinear coordinates, by means of
the functions g;; and ¢ (Theorem 1.3-1).

We next introduce in Section 1.4 the fundamental notion of covari-
ant derivatives v;); of a vector field v;g' : @ — R® defined by means
of its covariant components v; over the contravariant bases g*. Covari-
ant derivatives constitute a generalization of the usual partial deriva-
tives of vector fields defined by means of their Cartesian components.
In particular, covariant derivatives naturally appear when a system of
partial differential equations with a vector field as the unknown, e.g.,
the displacement field in elasticity, is expressed in terms of curvilinear
coordinates.

It is a basic fact that the symmetric and positive-definite matrix field
(9ij) defined on € in this fashion cannot be arbitrary. More specifically
(Theorem 1.5-1), its components and some of their partial derivatives
must satisfy necessary conditions that take the form of the following
relations (meant to hold for all 4,7, k,q € {1,2,3}): Let the functions
Tijq and I'}; be defined by

1 N _
Tijq = 5(6jgiq+aigjq_aqgij) and I'¥; = gP'T';;4, where (g77) = (gi5) ™"

Then, necessarily,

BjI‘ikq — 8kFijq + Ffjl—‘kqp — I‘ka‘jqp =0in Q.
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The functions I';;4 and I‘fj are the Christoffel symbols of the first,
and second, kind and the functions

Rgijk = 6jrikq — Oklijq + F?jrkqp - karjqp

are the covariant components of the Riemann curvature tensor of the
set ©(12).

We then focus our attention on the reciprocal questions:

Given an open subset Q of R? and a smooth enough symmetric and
positive-definite matrix field (g;;) defined on €, when is it the metric.
tensor field of an open set ©(2) C E3, i.e., when does there exist an
immersion © : Q — E3 such that g;; = 6,0 - ;0 in Q7

If such an immersion exists, to what extent is it unique?

As shown in Theorems 1.6-1 and 1.7-1, the answers turn out to be
remarkably simple to state (but not so simple to prove, especially the first
onel): Under the assumption that Q is simply-connected, the necessary
conditions

Ryijr =0in Q

are also sufficient for the existence of such an immersion ©.

Besides, if Q is connected, this immersion is unique up to isometries
of E®. This means that, if @ : Q — E3 is any other smooth immersion
satisfying _ _

gi5 = 616 . 616 in Q,

there then exist a vector ¢ € E3 and an orthogonal matrix Q of order
three such that

O(z) = ¢+ QO(z) for all z € Q.

Together, the above existence and uniqueness theorems constitute
an important special case of the fundamental theorem of Riemannian
geometry and as such, constitute the core of Part 1.

We conclude this chapter by indicating in Section 1.8 that the equiva-
lence class of ©, defined in this fashion modulo isometries of E2, depends
continuously on the matriz field (g;;) with respect to various topologies.

1.1 Curvilinear coordinates

To begin with, we list some notations and conventions that will be con-
sistently used throughout.

All spaces, matrices, etc., considered here are real.

Latin indices and exponents range in the set {1,2,3}, save when
otherwise indicated, e.g., when they are used for indexing sequences, and
the summation convention with respect to repeated indices or exponents
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is systematically used in conjunction with this rule. For instance, the
relation

9:(z) = gij()g’ (z)
means that

3
9:(z) = ) 9i5(2)g’ (x) for i =1,2,3.
J=1

Kronecker’s symbols are designated by &7, 4,5, or 6% according to the
context.

Let E3 denote a three-dimensional Euclidean space, let a-b and aAb
denote the Euclidean inner product and exterior product of a,b € E3,
and let |a| = v/@- a denote the Euclidean norm of a € E3. The space
E? is endowed with an orthonormal basis consisting of three vectors
e = €;. Let Z; denote the Cartesian coordinates of a point Z € E2 and
let 8; ;= 6/8!?,

In addition, let there be given a three-dimensional vector space in
which three vectors e = e; form a basis. This space will be identified with
R3. Let z; denote the coordinates of a point z € R® and let 8; := 8/0x;,
81'3' = 62/3xi6xj, and 8ijk = 33/3$i6$j6:13k.

Let there be given an open subset Q of E3 and assume that there
exist an open subset © of R® and an injective mapping © : Q@ — E3 such

Figure 1.1-1: Curvilinear coordinates and covariant bases in an open set  c E3.
The three coordinates zi,z2,23 of £ € Q are the curvilinear coordinates of ¥ =
©(x) € . If the three vectors g;(z) = 8;@(z) are linearly independent, they form
the covariant basis at £ = ©(z) and they are tangent to the coordinate lines passing
through 7. ‘
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that ©(Q) = Q). Then each point Z € Q can be unambiguously written
as .
Z=0(z),z€Q,

and the three coordinates x; of x are called the curvilinear coordi-
nates of Z (Figure 1.1-1). Naturally, there are infinitely many ways of
defining curvilinear coordinates in a given open set ﬁ, depending on how
the open set 2 and the mapping © are chosen!

Ezamples of curvilinear coordinates include the well-known cylindri-
cal and spherical coordinates (Figure 1.1-2).

oR»

E3
e P

Figure 1.1-2: Two familiar ezamples of curvilinear coordinates. Let the mapping
© be defined by
©: (p,p,2) €Q — (pcosp, psiny, 2z) € E3.
Then (p,p,2z) are the cylindrical coordinates of T = ©(yp,p,z). Note that (¢ +
2km, p,z) or (¢ + ® + 2kmw, —p, 2), k € Z, are also cylindrical coordinates of the same
point % and that ¢ is not defined if Z is the origin of E3.
Let the mapping © be defined by
O : (o, 9,7) € Q — (rcosycosp, TcosPsing, rsiny) € B3,
Then (g, ¥, ) are the spherical coordinates of Z = ©(p, %, r). Note that (p+2kn, 1+
20w, ) or (¢ + 2km, ¥ + w + 20w, —r) are also spherical coordinates of the same point
% and that ¢ and % are not defined if 7 is the origin of E3.

In a different, but equally important, approach, an open subset 2 of
R3 together with a mapping © :  — E?3 are instead a priori given.

If ® € CO(E?) and © is injective, the set { := ©(Q) is open
by the invariance of domain theorem (for a proof, see, e.g., Nirenberg
[1974, Corollary 2, p. 17} or Zeidler [1986, Section 16.4]), and curvilinear
coordinates inside ) are unambiguously defined in this case.

If © € C(Q; E®) and the three vectors 8;©(z) are linearly indepen-
dent at all z € (Q, the set Qis again open (for a proof, see, e.g., Schwartz
[1992] or Zeidler [1986, Section 16.4]), but curvilinear coordinates may
be defined only locally in this case: Given z € (2, all that can be asserted
(by the local inversion theorem) is the existence of an open neighborhood
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V of z in ) such that the restriction of © to V is a C!-diffeomorphism,
hence an injection, of V onto ©(V).

1.2 Metric tensor
Let Q be an open subset of R3 and let
©=6;¢:0-E?

be a mapping that is differentiable at a point = € Q. If d« is such that
(z + dzx) € Q, then '

O(z + 6z) = O(z) + VO(x)dx + o(dz),

where the 3 x 3 matrix VO (z) and the column vector dx are defined by

016, 0201 8361 61
V@(.’L') = 8162 62@2 6382 (:L‘) and ox = 512
5183 0203 03603 dx3

Let the three vectors g;(z) € R® be defined by

0;01
gi(z) == 0:0(z) = | 8:62 | (z),
0;83

ie., g;,(z) is the i-th column vector of the matriz VO(z). Then the
expansion of ® about z may be also written as

O(z + éx) = O(z) + dz*g;(z) + o(dx).

If in particular 8z is of the form dx = dte;, where 6t € R and e; is
one of the basis vectors in R3, this relation reduces to

O(z + dte;) = O(xz) + dtg;(x) + o(4t).

A mapping © : § — E? is an immersion at z € Q if it is differ-
entiable at z and the matrix V@(z) is invertible or, equivalently, if the
three vectors g;(z) = 8;0(z) are linearly independent. ’

Assume that the mapping © is an immersion at x. Then the three
vectors g;(z) constitute the covariant basis at the point T = ©(z). -

In this case, the last relation thus shows that each vector g;(z) is
tangent to the i-th coordinate line passing through T = ©(z), defined
as the image by © of the points of Q that lie on the line parallel to e;
passing through z (there exist to and ¢; with to <0 <1 such that the
i-th coordinate line is given by t € Jto,t1[ — f;(t) := O(z +te;) ina
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neighborhood of 7; hence f.(0) = 8;0(z) = g,(z)); see Figures 1.1-1
and 1.1-2.

Returning to a general increment dx = Jz‘e;, we also infer from
the expansion of © about z that (recall that we use the summation
convention):

|©(z + dz) — O(z)|* = 62T VO(z)T VO(z)dz + o(|6z|?)
= 6:cigi(:f:) - g,(z)827 + o(|6z|?).

Note that, here and subsequently, we use standard notations from
matrix algebra. For instance, 8= stands for the transpose of the column
vector 8= and VO(z)T designates the transpose of the matrix VO(z),
the element at the i-th row and j-th column of a matrix A is noted
(A)ij, etc.

In other words, the principal part with respect to dx of the length
between the points @ (z+dz) and ©(z) is {dz'g;(z) g, (z)éx’ }'/2. This
observation suggests to define a matrix (g;;(z)) of order three, by letting

9:i(2) := 9,(z) - g;(2) = (VO(2)T VO(2))y;.

The elements g;;(z) of this symmetric matrix are called the.covari-
ant components of the metric tensor at T = O(z).

Note that the matriz VO(z) is invertible and that the matriz (gi; (z))
is positive definite, since the vectors g;(z) are assumed to be linearly
independent.

The three vectors g;(z) being linearly independent, the nine relations

g'(z) - g;(=) = 6

unambiguously define three linearly independent vector_s g'(z). To see
this, let a priori g*(z) = X**(z)g,(x) in the relations g*(z) - g,(x) = d%.
This gives X ** (z)gx;(z) = 6}; consequently, X *(z) = g*(z), where

(97 (2)) = (gis(=) ™"

Hence g'(z) = ¢**(z)gx(z). These relations in turn imply that

g'(z) - g (z) = (6" (2)gx(2)) - (¢"(x)g,(x))
= g™ (2)g% (z)gie(z) = g™*(2)8] = ¢“ (=),

and thus the vectors gi(a:) are linearly independent since the matrix
(g (z)) is positive definite. We would likewise establish that g;(z) =
gij(z)g’ (z). .
The three vectors g*(z) form the contravariant basis at the point
= O(z) and the elements g*/(z) of the symmetric positive definite



8 Philippe G. Ciarlet

matrix (¢¥(z)) are the contravariant components of the metric
tensor at T = O(z).

Let us record for convenience the fundamental relations that exist
between the vectors of the covariant and contravariant bases and the
covariant and contravariant components of the metric tensor at a point
z € §) where the mapping © is an immersion:

gij(x) = gi(z) - g;(z) and g¢gY(z)=g'(z) g¢’(z),
g:(z) = gi;(z)g’ (z) and g'(z) = g7 (z)g;().

A mapping © : @ — E3 is an immersion if it is an immersion at
each point in , i.e., if © is differentiable in 2 and the three vectors
g:(z) = 8;,0(z) are linearly independent at each z € 2.

If ©® : O — E? is an immersion, the vector fields g; : @ — R3
and g* : Q@ — R3 respectively form the covariant, and contravariant
bases. ,

To conclude this section, we briefly explain in what sense the com-
ponents of the “metric tensor” may be “covariant” or “contravariant”.
_ Let Q and Q be two domains in R3 and let © : @ — E? and e :
Q0 — E3 be two C*-diffeomorphisms such that ©(Q) = ©(Q) and such
that the vectors g;(z) := 8;0(z) and g;(7) = 8;0() of the covariant
bases at the same point ©(z) = é(.%') € E2? are linearly independent.
Let g*(z) and g'(Z) be the vectors of the corresponding contravariant
bases at the same point Z. A simple computation then shows that

5@ and ¢'2) = X @5 @),

gi(z) =

where x = (x?) = é_l 0® € C1(9Q) (hence = x(z)) and X =
%) :=x"'eC(}Q).

Let g;;(z) and §;;(Z) be the covariant components, and let g% (z) and
G (Z) be the contravariant components, of the metric tensor at the same
point O(z) = ©(Z) € E3. Then a simple computation shows that

05@) = 2 ) 2 (@)51a(@) and 47(0) = 520 FE- @@

These formulas explain why the components g;;(z) and g*(z) are
respectively called “covariant” and “contravariant”: Each index in g;;(z)
“yaries like” that of the corresponding vector of the covariant basis under
a change of curvilinear coordinates, while each exponent in g*/ () “varies
like” that of the corresponding vector of the contravariant basis.

Remark. What is exactly the “second-order tensor” hidden behind
its covariant components g;;(z) or its contravariant exponents g*(z)
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is beautifully explained in the gentle introduction to tensors given by
Antman [1995, Chapter 11, Sections 1 to 3]; it is also shown in ibid. that
the same “tensor” also has “mixed” components g;-(a:), which turn out
to be simply the Kronecker symbols 4. O

In fact, analogous justifications apply as well to the components of
all the other “tensors” that will be introduced later on. Thus, for in-
stance, the covariant components v;(z) and 7;(z), and the contravariant
components v*(z) and v*(z) (both with self-explanatory notations), of a
vector at the same point ©(z) = ©(Z) satisfy (cf. Section 1.4)

vi(2)g' () = %:(@)g' (@) = v'(z)gi(2) = 7' (3)8:(3)-

It is then easily verified that

o~

(@) = 22 @)% @) and '(z) = G2 @ @)

In other words, the components v;(x) “vary like” the vectors g;(x)
of the covariant basis under a change of curvilinear coordinates, while
the components v*(z) of a vector “vary like” the vectors g*(x) of the
contravariant basis. This is why they are respectively called “covariant”
and “contravariant”. A vector is an example of a “first-order” tensor.

Note, however, that we shall no longer provide such commentaries in
the sequel. We leave it instead to the reader to verify in each instance
that any index or exponent appearing in a component of a “tensor”
indeed behaves according to its nature.

The reader interested by such questions will find exhaustive treat-
ments of tensor analysis, particularly as regards its relevance to elasticity,
in Boothby [1975], Marsden & Hughes [1983, Chapter 1], or Simmonds
[1994].

1.3 Volumes, areas, and lengths in curvilinear
coordinates

We now review fundamental formulas showing how volume, area, and
length elements at a point £ = ©(z) in the set Q@ = O(2) can be ex-
pressed either in terms of the matrix V@©(z), or in terms of the matrix
(955 ().

These formulas thus highlight the crucial role played by the matrix
(gi;(z)) for computing “metric” notions at the point z = ©(z). Indeed,
the “metric tensor” well deserves its name!

A domain in R%,d > 2, is a bounded, open, and connected subset D
of R? with a Lipschitz-continuous boundary, the set D being locally on
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one side of its boundary. All relevant details needed here about domains
are found in Necas [1967] or Adams [1975].

Given a domain D C R? with boundary T', we let dz denote the
volume element in D, dI' denote the area element along I', and n =
n;€' denote the unit (|n| = 1) outer normal vector along I (dI‘ is well
defined and n is defined dI'-almost everywhere since I' is assumed to be
Lipschitz-continuous). :

* Note also that the assumptions made on the mapping © in the next
theorem guarantee that, if D is a domain in R? such that D C Q, then
(D}~ cQ, {e)}- = ©(D), and the boundaries 8D of D and 8D of
D are related by D = ©(8D) (see, e.g., Clarlet [1988, Theorem 1.2-8
and Example 1.7]).

If A is a square matrix, Cof A denotes the cofactor matm of A.
Thus Cof A = (det A)A~7 if A is invertible.

Theorem 1.3-1. Let Q2 be an open subset of R?, let © : @ — E? be an
injective and smooth enough immersion, and let © = e(Q).

(a) The volume element dZ ot T = O(z) € Q is given in terms of the
volume element dz at z € Q by

dz = |‘de§V®(x)]dz = v/ g(z)dz, where g(z) := det(g@j(w)).

(b) Let D be a domain in R3 such that D C Q. The area element
d[’(Z) at = ©(z) € 8D is given in terms of the area element dI'(z) at
z'€ 8D by

dT(@) = | Cof VO(@)n(2)|dT (@) = V/9(@) /ni()g¥ (2)n;(z) AT (z),

where n(x) := n;(z)e* denotes the unit outer normal vector at z € 8D.
(c) The length element d4(Z) at T = O(z) € Q is given by

%) = {827V O(2)TVO(2)dz} "/ = {62°gi;(z)62 } /7,

where éx = §x'e;.

Proof. The relation dZ = |det VO(z)| dz between the volume el-
ements is well known. The second relation in (a) follows from the
relation g(x) = |det VO(z)|%, which itself follows from the relation
(9:(z)) = VO(2)TVO(z).

Indications about the proof of the relation between the area elements
d[(Z) and dI'(z) given in (b) are found in Ciarlet [1988, Theorem 1.7-1]
(in this formula, n(z) = ni(z)e' is identified with the column vector
in R3 with n;(z) as its components). Using the relations Cof (AT) =



