Addison

I ITRIVIR IR

(ZR3hR - SB2hR)

DESIGN PATTERNS
EXPLAINED

S Alan Shalloway — =
(%) James R. Trott -
#lH T b AR #
SS

China Machine Pre

IRITRIVIERE

(ZRIhR - Z52hR)

Design Patterns Explained
A New Perspective on Object-Oriented Design

_ (Second Edition)

Alan Shalloway
(%) James R. Trott =

English reprint edition copyright © 2006 by Pearson Education Asia Limited and China
Machine Press. :

Original English language title: Design Patterns Explained: A New Perspective on
Object-Oriented Design, Second Edition (ISBN 0-321-24714-0) by Alan Shalloway and James
R. Trott, Copyright © 2005.

All rights reserved.

Published by arrangement with the original publisher, Pearson Education, Inc., publishing
as Addison-Wesley.

For sale and distribution in the People’s Republic of China exclusively (except Taiwan,
Hong Kong SAR and Macau SAR).

A A5 SCRENR tiPearson Education Asia Ltd #SALHUM Tk AR E Sk AR . K28
HIRE BRI, DRUMEMR S XE SIS EA BN,

R THRIEARFIESEN (FOfbEEE. ®BT#RITERX R EEGEKX)
WEEIT.

#4554 H W A Pearson Education (S5A3H HMRER) BOBHRE, KREET
B,

IBE. #NeR.
AHEEME ALRTHREBRIESR

APREEIZES: BEF: 01-2005-4840
BEBER&RE (CIP) ¥iE

TSR (JESChR - B20R) / (%) Wik (Shalloway, A.) 3%, —Jkx:
HLBR Tk i hf3: . 2006. 1

(R)

B4R Design Patterns Explained: A New Perspective on Object-Oriented Design,
Second Edition

ISBN 7-111-17569-7

[0.9 I wRAMRIES-RFEIF-%E v. TP312
o AR A B S CIPE B (2005) 41190245

WU Tl AR 3t Clbsoarmsmix i 0 B AM22% BBECSHD 100037)

L BiRE
e G BRI BR 2 RIENRY - FAEB SR R AT R AT
20064F 1 B 1B 1R ENRI

718mm x 1020mm 1/16 - 29.25E15k
El#%: 0001-3 000/}
Er: 55.005C

JLAS, A #Iol. B, Bhil, mAiRiTEHIER
A W EHhe: (010) 68326294

EhRE 8915

XEE UM, FZRKOFHEREME S RNEARE, EHFEREAR
FENENGREE T 2MEARYE, hiERXBENESE, FEXEEGZEERRRY
ATEERALAREH. BERE. ERArERS, ZENPELR SHE S
BEMES, HEER T 2R LA FR & OB BB BT, hkif™
RS IFEENE, ROUEY THRATINE, TIBETEROEE, EEBERAMTE,
XEAFEME, KN EHASHE A OEETHRE .

L4, ERREBMAASNEDT, REMTEIZLERRE, S5 ALY
FRAZAY. XMHENETRNHRAMERAIE, bRk Wit
REHFTRE LEAHERE. EREFEERRBEMHAEE. Ml R rsik
T, REFRBEREL RN R RO ERABENS RS E T2 HEE
28k, HL, SIHE—HE ML BB 3 R E BT E R SRR
s EM, R SHFEN. BIREFNHR - HASHLH 2K,

PLM Tl MR A LS B ARA R R EINE “HRENRERS . H
19984146, A RIRRIE TIEE AUKFE Tk . BIFEIMEFBEM 1. BT ILER
Xm%ﬁ,ﬁMSHmMemm,mMmmme,MﬁmwmmhmngMMMn
%ﬁﬁ%%&ﬁﬁﬁﬁiTﬁﬂ%%ﬁ%§,&EW%%%&?W&H*%%&
hm@wm,%wm@,&m@muﬁm&w%km&iwﬂﬁ%ﬁﬁﬁ,u“H%
ﬂﬂ%&#”%ﬁ%&ﬁ,ﬁﬁﬁiﬂ‘mﬁﬁﬁﬁokﬂﬁﬁﬂ%ﬁ@,&EW%
TXENBHRGR A ks .

“Hﬁﬂﬂ%&%”mmﬁIﬁﬁﬂT@W%#%%ﬂﬁQ%,@WW?%K&
RUTHENEEIES, TAFFEHEE THERSERO T wHEB0 S
HREREREPENEE, ANEERALBOPERERF. £4. “HBEHLE22
&#”E%&ﬁTﬁﬁ¢%Wkﬁ%#%E&%*WﬁTEﬂ%ﬂma#WW?%&
RHAAEREMA MBS LR, it -8 5B T T IRCHER,

WiE F PR IR RIS SEE B R B BIRAL, 29 R SN BB =
KA AEMEA BRI BE. Kbk, EEATEIMASEBMOG R, 78 iy
ﬁ”%ﬁﬂﬂZT&ﬁzAgﬂmH%MﬁH:%“H%ﬂﬂ#&#”Z%,H%m
MRETBCH, WISSRFFREN “SHREMBE ; RN, 342 EBFHREHSSH
%mmeOMM%"%Wﬁ&“é%%ﬁ%ﬂﬁggﬁro%Tﬁﬂﬁzﬁ&#mﬁ

iv

B, RIRh T E s FRMENIRS , £EATRETHEPER. ERK
F#. EERYE. BRI KE. EHRF. FEXEKRFE. BEKFE. #HLKE. F
EEHE AR, BRETILA%. ARKEKRE. PEARKE. EFERERKKE.
LBk, RIlkE. BREETRE. BINAE. Mt TH#RE. PEERER
ZEMIFNMEF OFENEAKRFZNBFILAETREILNE N SIRNE LR EHR
‘“ERIBRERST, AIRNVREEEE W GE.

X =ENT RN BE R U EAIMRBEHNE R, RN ELRAE
REVHBEEGITEN. XbiF2EMHTHM. L. T., Stanford, U.C. Berkeley,
C.M. U FHRLMAEIERM. FMUEETEFE. BESEH. BIERY%. HE
Pk REH. BHRE. RiFFEHE. RIR. A% G55, EEESZEN
REUHREN LW ERFEOEOIRE, MASEHG—FNHABERTEZFE.
FRHE=+THHARE. ARCHAMROLEMERRH. 16X 5 %R EN LT
KRYERIHESIZ T, EH S HEHBELR2NERPHEET[AE.

BURHIER . SMMOEM. —HNEE. THROER. BansE, xeEEd
BNWEBE THEARIE, ERMVBERERERE, TRMOELEREZIAR
X—&AR AR EERB) . BEMOHRRARRIMMEEBSIRA. £EATRAE
WFIiEE M BAN TR HB U RA TRE, RIOWBEREFBEOT:

i, F-lR{F: hzjsj@hzbook.com
BEFEiE: (010) 68995264

BeAMbat: AbRTHPERX B H RS
BB 4R8D: 100037

EREBSERE
(kR EE T)

mEWE RBHE LA
£ BEF R#k RHE

FHE ERE FRY HAF
BT O BAZR 0 HKeR A4t
A4k 2 EmE K W
10 F WER AEEE EENL

= ¥

SN

2 fa AEEE R

To Leigh, Bryan, Lisa, Michael, and Steven
for their love, support,
encouragement, and sacrifice.

—Alan Shalloway

To Jill, Erika, Lorien, Mikaela, and Geneva,
the roses in the garden of my life.
sola gloria Dei

—James R. Trott

Preface

viii

Preface

We have changed the r in which we present some of the pat-
terns. This sequence is more helptul for the students in our courses
"as they leam the ideas behmd pattems.

We have touched every chapter, mcorporanng the feedback we
have received from Qur many readers over these past thr;:e years

Design patterns and object-oriented programming. They hold such
promise to make your life as a software designer and developer eas-
ier. Their terminology is bandied about every day in the technical
and even the popular press. It can be hard to learn them, however,
to become proficient with them, to understand what is really going
on.

Perhaps you have been using an object-oriented or object-based lan-
guage for years. Have you learned that the true power of objects is
not inheritance, but is in “encapsulating behaviors”? Perhaps you
are curious about design patterns and have found the literature a bit
too esoteric and high-falutin. If so, this book is for you.

It is based on years of teaching this material to software developers,
both experienced and new to object orientation. It is based upon the
belief—and our experience—that when you understand the basic
principles and motivations that underlie these concepts, why they
are doing what they do, your learning curve will be incredibly short-
er. And in our discussion of design patterns, you will understand the

true mindset of object orientation, which is a necessity before you can

become proficient.

As you read this book, you will gain a solid understanding of 12 core
design patterns and a pattern used in analysis. You will learn that
design patterns do not exist in isolation, but work in concert with
other design patterns to help you create more robust applications.
You will gain enough of a foundation that you will be able to read the
design pattern literature, if you want to, and possibly discover patterns
on your own. Most importantly, you will be better equipped to cre-
ate flexible and complete software that is easier to maintain.

Although the 12 patterns we teach here are not all of the patterns you
should learn, an understanding of these will enable you to learn the
others on your own more easily. Instead of giving you more patterns
than you need to get started, we have included pattern-related is-
sues that will be more useful.

From Object Orientation to Patterns to True
Object Orientation

In many ways, this book is a retelling of my personal experience
learning design patterns. This started with learning the patterns them-
selves and then learning the principles behind them. I expanded this
understanding into the realms of analysis and testing as well as learn-
ing how patterns relate to agile coding methods. This second edition
of this book includes many additional insights I have had since pub-
lication of the first edition. Prior to studying design patterns, I con-
sidered myself to be reasonably expert in object-oriented analysis
and design. My track record had included several fairly impressive de-
signs and implementations in many industries. I knew C++ and was
beginning to learn Java. The objects in my code were well-formed and
tightly encapsulated. I could design excellent data abstractions for
inheritance hierarchies. I thought I knew object orientation.

Preface

ix

X

Preface

Now, looking back, I see that I really did not understand the full ca-
pabilities of object-oriented design, even though I was doing things
the way most experts advised. It wasn’t until I began to learn design
patterns that my object-oriented design abilities expanded and deep-
ened. Knowing design patterns has made me a better designer, even
when I don‘t use these patterns directly.

I began studying design patterns in 1996. I was a C++/object-orient-
ed design mentor at a large- aerospace company in the Northwest.
Several people asked me to lead a design pattern study group. That’s
where I met my coauthor, Jim Trott. In the study group, several in-
teresting things happened. First, 1 grew fascinated with design pat-
terns. I loved being able to compare my designs with the designs of
others who had more experience than I. And second, I discovered
that I was not taking full advantage of designing to interfaces and
that I didn’t always concern myself with seeing whether I could have
an object use another object without knowing the used object’s type.
I also noticed that beginners in object-oriented design—those who
would normally be deemed as learning design patterns tco early—
were benefiting as much from the study group as the experts were.
The patterns presented examples of excellent object-oriented designs
and illustrated basic object-oriented principles, which helped to ma-
ture their designs more quickly. By the end of the study sessions, I was
convinced that design patterns were the greatest thing to happen to
software design since the invention of object-oriented design.

When I looked at my work at the time, however, I saw that I was not
incorporating any design patterns into my code. Or, at least, not con-
sciously. Later, after learning patterns, I realized I had incorporated
many design patterns into my code just out of being a good coder.
However, now that I understand patterns better, I am able to use
them better.

I just figured I didn’t know enough design patterns yet and needed
to learn more. At the time, I only knew about six of them. Then I had
an epiphany. I was working as a mentor in object-oriented design

for a project and was asked to create the project’s high-level design.
The leader of the project was extremely sharp, but was fairly new to

object-oriented design.

The problem itself wasn't that difficult, but it required a great deal of
attention to make sure the code was going to be easy to maintain.
Literally, after about two minutes of looking at the problem, I had de-
veloped a design based on my normal approach of data abstraction.
Unfortunately, it was also clear to me this was not going to be a good
design. Data abstraction alone had failed me. I had to find something
better.

Two hours later, after applying every design technique I knew, I was
no better off. My design was essentially the same. What was most
frustrating was that I knew there was a better design. I just couldn’t
see it. Ironically, I also knew of four design patterns that “lived” in my
problem, but I couldn‘t see how to use them. Here I was—a supposed
expert in object-oriented design—baffled by a simple problem!

Feeling very frustrated, I took a break and started walking down the
hall to clear my head, telling myself I would not think of the prob-
lem for at least 10 minutes. Well, 30 seconds later, I was thinking
about it again! But I had gotten an insight that changed my view of
design patterns: rather than using patterns as individual items, I
should use the design patterns together.

Patterns are supposed to be sewn together to solve a problem.

I had heard this before, but hadn’t really understood it. Because pat-
terns in software have been introduced as design patterns, I had always
labored under the assumption that they had mostly to do with design.
My thoughts were that in the design world, the patterns came as
pretty much well-formed relationships between classes. Then I read
Christopher Alexander’s amazing book, The Timeless Way of Building
(Oxford University Press, 1979). I learned that patterns existed at all
levels—analysis, design, and implementation. Alexander discusses

Preface

Xi

xii

Preface

using patterns to help in the understanding of the problem domain
(even in describing it), not just using them to create the design after

the problem domain is understood.

My mistake had been in trying to create the classes in my problem do-
main and then stitch them together to make a final system, a process
that Alexander calls a particularly bad idea. I had never asked whether
I had the right classes because they just seemed so right, so obvious;
they were the classes that immediately came to mind as I started my
analysis, the “nouns” in the description of the system that we had been
taught to look for. But I had struggled trying to piece them together.

When I stepped back and used design patterns and Alexander’s ap-
proach to guide me in the creation of my classes, a far superior solu-
tion unfolded in only a matter of minutes. It was a good design, and
we put it into production. I was excited—excited to have designed a
good solution and excited about the power of design patterns. It was
then that I started incorporating design patterns into my develop-
ment work and my teaching.

I began to discover that programmers who were new to object-ori-
ented design could learn design patterns, and in doing so, develop a
basic set of object-oriented design skills. It was true for me, and it
was true for the students whom I was teaching.

Imagine my surprise! The design pattern books I had been reading and
the design pattern experts I had been talking to were saying that you
really needed to have a good grounding in object-oriented design be-
fore embarking on a study of design patterns. Nevertheless, I saw,
with my own eyes, students who learned object-oriented design con-
currently with design patterns learned object-oriented design faster
than those just studying object-oriented design. They even seemed to
learn design patterns at almost the same rate as experienced object-
oriented practitioners.

I began to use design patterns as a basis for my teaching. I began to
call my classes Pattern-Oriented Design: Design Patterns from Analysis to
Implementation.

I wanted my students to understand these patterns and began to dis-
cover that using an exploratory approach was the best way to foster
this understanding. For instance, I found that it was better to pres-
ent the Bridge pattern by presenting a problem and then have my stu-
dents try to design a solution to the problem using a few guiding
principles and strategies that I had found were present in most of the
patterns. In their exploration, the students discovered the solution—

essentially the Bridge pattern—and remembered it.

Preface

Xiii

Xiv

Preface

,‘nme reconcxhng dcsxgn pattems wnh Xi’ and TDD However, I

ed in the same pnncxples (although thcy take dxfferent de;“»;gxit ap~
; proaches) ln fact m our agllc softwarc d’evelﬁpment boo (:amp

' able of aglle development = : S
, Thmughout thxs boek 1 discuss many of the waysdesm ;ra‘tmnsﬁ
: relate to agﬂe managemem and codmgﬁmacnces Ifyou are unfa-a
- miliar with XP, TDD, or Scrum, do not be too concerned about
these comments. However, if this is the case, I suggest the next
ook you read be about one of these topics. ~

In any event, I found that these guiding principles and strategies
could be used to “derive” several of the design patterns. By “derive
a design pattern,” I mean that if I looked at a problem that might be
solved by a design pattern, I could use the guiding principles and
strategies that I learned from patterns to come up with the solution
expressed in a pattern. I made it clear to my students that we weren't
really coming up with design patterns this way. Instead, I was just il-
lustrating one possible thought process that the people who came up
with the original solutions, those that were eventually classified as de-
sign patterns, might have used.

My abilities to explain these few, but powerful, principles and strate-
gies improved. As they did, I found that it became more useful to ex-
plain an increasing number of the Gang of Four patterns. In fact, I use
these principles and strategies to explain virtually all the patterns I dis-
cuss in my design patterns course.

I found that I was using these principles in my own designs both with
and without patterns. This didn’t surprise me. If using these strate-
gies resulted in a design equivalent to a design pattern when I knew
the pattern was present, that meant they were giving me a way to
derive excellent designs (because patterns are excellent designs by

definition). Why would I get any poorer designs from these techniques
just because I didn’t know the name of the pattern that might or might
not be present anyway?

These insights helped hone my training process {and now my writ-
ing process). I had already been teaching my courses on several lev-
els. I was teaching the fundamentals of object-oriented analysis and
design. I did that by teaching design patterns and using them to il-
lustrate good examples of object-oriented analysis and design. In ad-
dition, by using the patterns to teach the concepts of object
orientation, my students were also better able to understand the prin-
ciples of object orientation. And by teaching the guiding principles and
strategies, my students were able to create designs of comparable
quality to the patterns themselves.

I relate this story because this book follows much the same pattern
as my course (pun intended). Virtually all the material in this book
now is covered in one of our courses on design patterns, test-driven-
development or agile development best practices.'

As you read this book, you will learn the patterns. Even more impor-
tantly, you will learn why they work and how they can work together,
and the principles and strategies upon which they rely. It will be useful
to draw on your own experiences. When I present a problem in the
text, it is helpful if you imagine a similar problem that you have come
across. This book isn't about new bits of information or new patterns to
apply, but rather a new way of looking at object-oriented software de-
velopment. I hope that your own experiences, connected with the prin-
ciples of design patterns, will prove to be a powerful ally in your learning.

Alan Shalloway
December 2000
Updated October 2004

L. See the book’s companion Web site, http://www_netobjectives.com/dpexplained, to
see more about these courses.

Preface

XV

XVi

Preface

From Artificial Intelligence to Patterns
to True Object Orientation

My journey into design patterns had a different starting point than
Alan’s, but we have reached the same conclusions:

o Pattern-based analyses make you a more effective and efficient
analyst because they enable you to deal with your models more
abstractly and because they represent the collected experiences
of many other analysts.

o Patterns help people to learn principles of object orientation. The
patterns help to explain why we do what we do with objects.

I started my career in artificial intelligence (Al) creating rule-based ex-
pert systems. This involves listening to experts and creating models
of their decision-making processes and then coding these models into
rules in a knowledge-based system. As I built these systems, I began
to see repeating themes: In common types of problems, experts tend-
ed to work in similar ways. For example, éxpcrts who diagnose prob-
lems with equipment tend to look for simple, quick fixes first, and
then they get more systematic, breaking the problem into compo-
nent parts; in their systematic diagnosis, however, they tend to try first
inexpensive tests or tests that will eliminate broad classes of prob-
lems before other kinds of tests. This was true whether we were di-
agnosing problems in a computer or a piece of oil field equipment.

Today I would call these recurring themes patterns. Intuitively 1
began to look for these recurring themes as I was designing new ex-
pert systems. My mind was open and friendly to the idea of patterns,
even though I did not know what they were.

Then, in 1994, T discovered that researchers in Europe had codified
these patterns of expert behavior and put them into a package that
they called Knowledge Analysis and Design Support (KADS). Dr. Karen
Gardner, a most gifted analyst, modeler, mentor, and human being,

