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Preface

Analysing and designing systems with the help of suitable mathematical tools is
extraordinarily important for engineers. Accordingly, systems theory is a part of
the core curriculum of modern electrical engineering and serves as the foundation
of a large number of subdisciplines. Indeed, access to specialised areas of electrical
engineering demands a mastery of systems theory.

An introduction to systems theory logically begins with the simplest abstrac-
tion: linear, time-invariant systems. We find applications of such systems ev-
erywhere, and their theory has attained advanced maturity and elegance. For
students who are confronted with the theory of linear, time-invariant systems for
the first time, the subject unfortunately can prove difficult, and, if the required
and deserved academic progress does not materialise, the subject might be down-
right unpopular. This could be due to the abstract nature of the subject area
coupled with the deductive and unclear presentation in some lectures. However,
since failure to learn the fundamentals of systems theory would have catastrophic
repercussions for many subsequent subjects, the student must persevere.

We have written this book as an easily accessible introduction to systems theory
for students of electrical engineering. The content itself is nothing new; the theory
has already been described in other books. What is new is how we deliver the
material. By means of small, clear explanatory steps, we aim to present the
abstract concepts and interconnections of systems theory so simply as to make
learning easy and fun. Naturally, only the reader can assess whether we have
achieved our goal.

To aid understanding, we generally use an inductive approach, starting with an
example and then generalising from it. Additional examples then illustrate further
aspects of an idea. Wherever a picture or a figure can enrich the text, we provide
one. Furthermore, as the text progresses, we continuously order the statements
of systems theory in their overall context. Accordingly, in this book a discussion
of the importance of a mathematical formula or a theorem takes precedence over
its proof. While we might omit the derivation of an equation, we never neglect
a discussion of its applications and consequences! The numerous exercises at the
end of each chapter (with detailed solutions in the appendix) help to reinforce the
reader’s knowledge.
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Although we have written this book primarily for students, we are convinced
that it will also be useful for practitioners. An engineer who wants to brush
up quickly on some subject will appreciate the easy readability of this text, its
practice-oriented presentation, and its many examples.

This book evolved out of a course on systems theory and the corresponding
laboratory exercises at the Friedrich Alexander University in Erlangen-Niirnberg.
The course is compulsory for students of electrical engineering in the fifth semester.
As such, the material in this book can be worked through completely in about 50
hours of lectures and 25 hours of exercises. We do assume knowledge of the fun-
damentals of engineering mathematics (differential and integral calculus, linear
algebra) and basic knowledge of electrical circuits. Assuming that this mathemat-
ical knowledge has been acquired earlier, the material is also suitable for use in the
third or fourth semester. An engineering curriculum often encompasses complex
function theory and probability theory as well; although these fields are helpful,
we do not assume familiarity with them.

This book is also suitable for self-study. Assuming full-time, concentrated
work, the material can be covered in four to six weeks.

Our presentation begins with continuous signals and systems. Contrary to
some other books that first introduce detailed forms of description for signals and
only much later add systems, we treat signals and systems in parallel. The purpose
of describing signals by means of their Laplace or Fourier transformations becomes
evident only through the characteristics of linear, time-invariant systems. In our
presentation we emphasise the clear concept of Eigen functions, whose form is not
changed by systems. To take into account initial states, we use state space descrip-
tions, which elegantly allow us to couple an external and an internal component of
the system response. After covering sampling, we introduce time-discrete signals
and systems and so extend the concepts familiar from the continuous case. There-
after discrete and continuous signals and systems are treated together. Finally, we
discuss random signals, which are very important today.

To avoid the arduous and seldom perfect step of correcting camera-ready copy,
we handled the layout of the book ourselves at the university. All formulas and
most of the figures were typeset in LaTeX and then transferred onto overhead slides
that were used for two years in the systems theory lectures. We are most grateful
to some 200 registered students whose attentive and astute criticism helped us to
debug the presentation and the typeset equations. In addition, one year’s students
read the first version of the manuscript and suggested diverse improvements. Fi-
nally numerous readers of the German version reported typographic errors and
sent comments by e-mail.

Our student assistants Lutz and Alexander Lampe, Stephan Gddde, Marion
Schabert, Stefan von der Mark and Hubert Rubenbauer demonstrated tremendous
commitment in typesetting and correcting the book as well as the solutions to the
exercises. We thank Ingrid Bértsch, who typed and corrected a large portion of
the text, as well as Susi Koschny, who produced many figures.



Preface xiii

For their attentive and tireless proof-reading, we especially thank Peter Eisert,
Achim Hummel, Wolfgang Sorgel, Gerhard Runze and Reinhard Bernstein. For
their generous availability for discussions about tricky mathematical questions, we
sincerely thank Peter Steffen and Ulrich Forster. Edward Kimber has mastered
the ambitious task of translating the German manuscript into English. Finally, we
express our gratitude to John Wiley & Sons for their uncomplicated co-operation
and their support of this project.

When the second edition of this book appears, we would like to extend our
list of acknowledgements. Therefore we have the following request to our readers.
Please send us your comments and suggestions. The simplest route is per e-mail
to stbuch@LNT.de. Whatever error you might detect and however small it may
be, please do not keep it to yourself. We promise that we will take to heart all
serious comments.

Erlangen, Germany, October 2000

Bernd Girod Rudolf Rabenstein Alexander Stenger
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1 Introduction

Systems theory concerns signals and systems. What are signals? What are sys-
tems? Before defining these terms, let us first examine some examples.

1.1 Signals

Signals describe quantities that change. Figure 1.1 depicts the electrical voltage
that a microphone produces in responsc to the spoken word ‘car’. This voltage
corresponds largely to the acoustic pressure on our ear, which reacts to the changes
in this pressure over time. The curve in Figure 1.1 shows the value of microphone
voltage in relation to time. Since there is a voltage value for every point in time,
we term this a continuous-time signal. We call time the independent variable and
the voltage changing over time the dependent variable or signal amplitude. We
usually represent the independent variable horizontally (z-axis) and the dependent
variable vertically (y-axis). ‘

> Ilcll | ngh | urn
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Figure 1.1: Example of a continuous-time signal: voice signal for the syllable ‘car’

Figure 1.2 depicts another continuous signal. The diagram shows the temper-
ature curves for a house wall, not over time, but in relation to the location. The
curves show the temperature profile inside a 15 cm thick brick wall where the air
temperature at the right side suddenly rose by 10 K. One hour later the local
temperature follows the curve represented by the thick line. At another time we
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would have a different temperature curve. In contrast to Figure 1.1, time here

is a parameter of a family of curves; the independent continuous variable is the
location in the wall.

10

8

temperature difference [K]
e}

0 002 004 006 008 01 012 0.14
location [m]

Figure 1.2: Temperature curve for a house wall

Figure 1.3 shows another kind of variable quantity, the stock market index
over time. Although this index changes all the while the stock market is open, the
diagram shows only the weekly average. Thus the depicted value does not change
continuously, but only once a week. When the signal amplitude occurs only at
certain fixed points in time (discrete times), but not for points in between, we call
the signal discrete or, more precisely, discrete-time. In our example, however, the
signal amplitude itself is not discrete but continuous.

" 2000,
2500 1 1
2400
2300 TI
3
Jan 5, 1996 June 28, 1996

Figure 1.3: The weekly German stock market index between January 5, 1996, and June
28, 1996

In Figure 1.4 we have entered the frequency of earned marks for a test in system
theory at the University of Erlangen-Niirnberg in April, 1996. The individual
marks assume only discrete values (1.0 - 5.0); the frequencies (in contrast to the
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average stock index) are whole numbers and so likewise discrete. In this case both
the independent and the dependent variables are discrete.

20

-
4]

frequency
S

(3]

OTTJT .fTo

1.0 1.3 1.7 2.0 23 27 3.0 33 3.7 40 43 47 50
mark

Figure 1.4: Frequency of earned marks for a test in systems theory

The signals we have considered thus far have been quantities that depend on a
single independent variable. However, there are quantities with dependencies on
two or more variables. The greyscales of Figure 1.5 depend on both the z and the
y co-ordinates. Here both axes represent independent variables. The dependent
variable s(z,y) is entered along one axis, but is a greyscale value between the
extreme values black and white.

When we add motion to pictures, we have a dependency on three independent
variables (Figure 1.6): two co-ordinates and time. We call these two- or three-
dimensional (or generally multidimensional) signals. When greyscale values change
continuously over space or over space and time, these are continuous signals.

All our examples have shown parameters (voltage, temperature, stock index,
frequencies, greyscale) that change in relation to values of the independent vari-
ables. Thereby they transmit certain information. In this book we define a signal

as follows:
Definition 1: Signal
A signal is a function or sequence of values that represents information.

The preceding examples have shown that signals can assume different forms. Sig-
nals can be classified according to various criteria, the most important of which

are summarised in Table 1.1.
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Figure 1.6: Moving picture as an example of a continuous three-dimensional signal

Table 1.1: Criteria for classifying signals

continuous(-time) - discrete(-time)
amplitude-continuous - amplitude-discrete
analogue - digital
real-valued - complex-valued
unidimensional - multidimensional
finite domain - infinite domain
deterministic - stachastic
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We have already discussed the difference between continuous and discrete sig-
nals on the basis of Figures 1.1 and 1.3. Discrete signals are also termed disco-
tinuous. Most of the preceding signals have been amplitude-continuous, because
their dependent variable can take on any value. However, the signal in Figure 1.4
is amplitude-discrete, for the dependent variable (number of examinees) can as-
sume only integer values. Taken precisely, the stock index in Figure 1.3 is likewise
amplitude-discrete, since the stock index is specified to only a certain number of
decimal places. Signals whose dependent and independent variables are continu-
ous are called analogue signals. If both variables are discrete, we call the signal
digital. The output voltage of a microphone is an analogue signal, for at any given
time amplitude values can be read with any desired precision. Sequences of values
stored in a computer are always digital, since the amplitude values can be stored
only with finite word length in distinct (discrete) storage cells.

All of the signals we have considered so far had real amplitudes and so are
classified as real-valued. Signals whose dependent variable assumes complex values
are called complez-valued.

The signals in Figures 1.1 to 1.4 are unidimensional, while those in Figures 1.5
and 1.6 are multidimensional. For reasons of graphic representation, all the signals
in the previous examples had finite domains of their independent variables and
so are classified as finite-domain signals. However, if we consider the signal in
Figure 1.6 as the picture of a television camera, then the domain of the location
variable becomes finite again due to the restricted picture excerpt, but the domain
of the time variable is infinite (neglecting the finite lifetime of the camera).

Signals are termed deterministic if their behaviour is known and can be rep-
resented, e.g., by a formula. The deflection voltage of an oscilloscope is a deter-
ministic signal, for its behaviour is known and can be represented as a sawtooth
wave. By contrast, we cannot define the amplitude values of a voice signal (see Fig-
ure 1.1) by means of formulae or graphical elements; furthermore, their continued
behaviour is not known. Such signals are termed stochastic. Since it is impossi-
ble to specify their behaviour in terms of functions, such signals are described by
expected values (mean, variance and many others).

1.2 Systems

1.2.1 What is a System?

We have seen that signals represent information. In many technical applications we
want to do more than just view information; we want to store, transfer, or couple
it with other information. This requires establishing and describing relationships
between signals. This leads us to the definition of a system:
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Definition 2: System

A system is the abstraction of a process or object that puts a number of signals
into some relationship.

In this general form we can imagine a system as a black box that communicates
with the outside world via various signals. Figure 1.7 depicts such a system that
establishes a relationship among the signals z; to z,.

system
x| X3 Xy

Figure 1.7: General system

In many cases we can classify a system’s signals as input and output signals.
Input signals exist independently of the system and are not affected by the sys-
tem; instead, the system reacts to these signals. Output signals bear information
generated by the system, often in response to input signals. The simple system
in Figure 1.8 has one input signal z and one output signal y. We also term y the
system response to x.

Naturally a system might contain multiple inputs and outputs. The system
determines the influence of individual inputs on the output signals. In general,
each output depends on all inputs. To simplify the notation, we combine input
and output signals in vectors (Figure 1.8).

simple system multiple inputs, multiple outputs

x| —= —» Y1

—»| system |—» Xy —™ system [T™ )2
X y : .

M — YK

—) system [—>

X y

Figure 1.8: Input/output systems



