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Preface

The present volume may be regarded as the third edition of the Finite
Element Method on Structural and Continuum Mechanics first published
in 1967. Although the size is now some three times that of the original ___
edition—it is written with identical objectives; first to teach and second to_ .
provide a ‘state of the art’ reference base of the subject—which is now-
recognized as one of considerable importance to both practicing engineers
and physicists as well as researchers.

Since the first volume was written the number of research publications
on the finite element method has been increasing almost exponentially. ¥
Close to 8000 references are recorded and many more are available as -
internal reports, etc.t While in early days the contributors have been -
almost exclusively engineers, today a large number of these conie from
the field of mathematics which has now adopted the method and made a :
great contribution to the understanding of finite element method. Clearly, ,
at this stage, a book doing justice to all points of view is impracticable— '
and in this volume much selection and filtering had to be done representing
the viewpoints of the author. This acknowledges both the mathematical
basis and the need for intuitive creative thought. Thus although the book
starts with the basis of a physical discrete system—and introduces the
finite element approximations via well understood elasticity examples—
in Chapter 3 the concepts of fundamental mathematjcal approximation-are
presented (in a manner avoiding, with apology to mathematicians, some ¢f
thre jargon and pedantry so as to make it suitable for engineers or physi-
cists). In some Tater chapters we show, however, how some of the usually
accepted criteria can be modified and violated with success. In particular
Chapter 11 provides some of the recent developments in this context,
showing how a cancellatjon of errors can occur through inexact integration
etc. -~ "

- 1 An excellent bibliography compiled by D. Norrie and G. de Vries (IFl/
PLENUM 1976) shows the following rate of publication with figures in parentheses
giving number of papers in the year: 1961 (10); 1962 (15); 1963 (25); 1964 (33);
1965 (67); 1966 (134); 1967 (162); 1968 (303); 1969 (531); 1970 (510); 1971 (844);
1972 (1004); 1973 (1169); 1974 (1377); 1975 (880 incompl.).
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viil PREFACE

The general definitions of the finite element method can today be made
so wide (vide Chapter 3) as to include other useful approximation
processes. In particular finite difference methods will now be recognized
as a subclass of the procedure and (with Some imagination) the boundary
integral method, which has been lately used with much success for certain
classes of problem, can be brought under the general definition. This
generalization is made with two-fold object. First to improve our under-
standing—second to incorporate selective advantages of the alternatives
in a unified manner. Chapter 23 is devoted to a recent development by
which the boundary integral and finite element methodologies are com-
bined. , :

The application of the finite element method is today so wide that it is
impossible to present an exhaustive picture in ane volume. The reader will
find, however, that the main fields of solid mechanics both in linear and
non-linear phases, fluid mechanics, heat transfer and electro-magnetism
have received some attention-—and depending on his interest he can direct
his selection appropriately. Clearly the study of the complete volume in
one course is not recommended and a teacher using the text will make an
‘appropriate selection of chapters. It is hoped, however, that the wider
coverage will prove its use by providing a reasonably self-contained
reference to many fields of activity into which sooner or later every one of
us is thrown. The notes of the text have been successfully used at many
levels of presentation, ranging in Chapters 1-3 from undergraduate
courses through postgraduate teaching to courses including practitioners
involved in development of the method. The prerequisite knowledge of
mathematics and mechanics does not go much beyond a reasonable
undergraduate engineering or physics course and some more abstract
topics—such as matrices and vectors —are expounded in appendices.

The finite element process is essentially dependent for its success on
skillful use of computers and efficient numerical techniques. Emphasis:
on the latter is made throughout the book but in the concluding chapter,
written by Professoi R. L. Taylor, much of the programming experience
of the University of California, Berkeley, and of the University of Wales
College, Swansea, is incorporated in a fairly complete computer. system
which the reader can use immediately for a variety of problems or extend
readily to suit his own needs. For simplicity the system is limited in
capacity. This at the same time avoids machine dependency—but its
expansion to a larger size can readily be made.



List of symbols

Below a list of principal symbols used in this book is presented for easy
reference, although all are defined in the text as they occur. On many’
occasions, additional ones have to be used in a minor context and a
non-uniqueness arises. It is hoped that appropriate text explanation will
avoid confusion.

The symbols are listed roughly in the order of pccurrence in chapter
sequence. ' 4

Matrices and column vectors are denoted by bold symbols, e'g., K and
a and K" stands for transpose of K. Dots are used to denote differentiation

. . d
with respect to one variable, e.g., T = 4, etc.

Chapter  Symbol

1 a,a - nodal or global dj
q; nodal force at i due to element e
K¢, K stiffness matrix (element/global)
fe; nodal element force at i due to p, etc.
r; external nodal force |
° _ stress (vector)
LT transformation matrices
b alternative parameters
] displacement vector (components u, v
' and w)
2,4,5,6 strain (vector)

strain operator
(displacement) shape function
strain shape function
elasticity matrix

body force (vector)

Young’s modulus

Poisson’s ratio

8,0, initial strain or stress
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7,8,9
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LIST OF SYMBOLS

t . ~ boundary traction
b.,t,.,etc., x—components of body forces and trac-
tions
X —components of dlrect and shear strain
or stress
strain energy -
potential energy of loads
total potential energy
- identity matrix
representative element dimension
body force potential (or other scalar
function)
body force potential nodal values
T=[1,1,0] or [1,1,1,0,0,0]
matrix equivalent of Kronecker delta for
two or three dimensional strain/stress
_ vectors
xpzx,y,2,rz20
Cartesian or cylindrical co-ordinates

T
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A(u), B(u), etc. operators defining governing differential
equations and boundary conditions

w, @, ¢ unknown function

v ‘test’ function

a, b, etc. nodal (or other) parameters defining the

trial expansion u ~ Na
‘weight’ function

4 stationary functional

a linear differential operator
constraint condition on u
Lagrangian multiplier

= [n,,n,,n.] vector normal to boundary
penalty number
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I Lagrange polynomials

En element, curvilinear, coordinates two and
three dimensions

L, L, (Ly) triangular (area) or tetrahedral (volume)

coordinates

Jacobian matrix

P \ydfa/thre weights

plate deflection
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generalized stress components (moments)
© rotations '

Hermitian polynomials

plate thickness

bulk and shear moduli

operator linking stresses and tractions on
boundary

stiffness matrices in bending.and in-plane
action respectively

direction cosines of between x’ and y axes,
etc. _

vector connecting point i to j

length of vector V;

angle of tangent to shell and Z axis

radii of cyrvature

permeability-matrix or coefficient
discretized pro¥lem matrix

pressure

potential

non-linear discrete equation operator
tangent matrix

yield function

plastic potential

initial stress matrix

mass matrix
' ping matrix

i-th eigenvalue or eigenvector

frequency

mode participation factor

characteristic nhumber

velocity vector

viscosity

density

Reynolds number

upwinding parameter

Hankel function

stress intensity factors
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1. Some Preliminaries:
The Standard Discrete System

1.1 Introduction

The limitations of the human mind are such that it cannot grasp the
behaviour of its complex surroundings and creations in one operation.
Thus the process of subdividing all systems into their individual compo-
nents or 'elements’, whose behaviour is readily understood. and then
rebuilding the original system from such components to study its behaviour
is a natural way in which the engineer, ,xhe scientist, or even the economist

_proceeds. -

In many situations an adequate modcl is obtained using a finite number
of well-defined components. Such problems we shall term discrete. In
others the subdivision is continued indefinitely and the probmonly
be defined using the mathematical fiction of an infinitesimal. This leads
to differential equations or equivalent statements which imply an infinite
number of elements. Such systems we shall term continuous.

With the advent of digital gomputers, discrete problems can generally
be solved readily even if thef number of elements is very large. As the
capacity of all computers is finite, continuous problems can only be solved
exactly by mathematical manipulation. Here, the available mathematical
techniques usually limit the possibilities to oversimplified situations.

To overcome the_intractability of the realistic type of continuum
problem, vé(ious methods of discretization had from time to time been
proposed both by engineers and mathematicians. All involve an approxi-
mation which, hopefully, is of such a kind that it approaches, as closely
as desired, the true continuum solution as the number of discrete variables
increases.

The discretization of continuum problems has been approached
differently by mathematicians and engineers. The first have developed
general techniques applicable directly to differential equatnons governm‘gn_
the problem, such as finite difference approximations. ! 2 various weighted
_residu edures,>* or approximate techniques of determining the
statlonanty of properly defined ' functionals’. The engineer. on the other

1



2 THE FINITE ELEMENT METHOD

hand, often approaches the problem more intuitively by creating an
analogy between real discrete elements and finite portions of a continuum
domain. For instance, in the field of solid mechanics McHenry,? Hreni-
koff,® and Newmark’ have, in the early 1940s, shown that reasonably
good solutions to a continuum problem can be obtained by substituting
small portions of the continuum by an arrangement of simple elastic bars.
Later, in the same context, Argyris® and Turner et al.® showed that a
more direct, but no less intuitive, substitution of properties can be made
much more directly by considering that small portions or ‘elements’ in
a continuum behave in a simplified manner.

It is from the engineering *direct analogy’ view that the term ‘finite
element’ has been born. Clough'® appears to be the first to use this term,
which implies in it a direct use of standard methodology applicable 10
discrete systems. Both conceptually and from the computational view-
point, this is of the utmost importance. The first allows an improved
understanding to be obtained ; the second the use of a unified approach
to the variety of problems and the development of standard computational
procedures.

Since the early 1960s much progress has been made, and today the
purely mathematical and ‘analogy’ approaches are fully reconciled. It is
the object of this text to present a view of the finite element method as
a general discretization procedure of continuum problems posed by mathe-
matically defined statements.

In'the analysis of problems of a discrete nature, a standard methodology
has been developed over the years. The civil engineer, dealing with
structures, first calculates his force—displacement relationships for each
element of the structure and then proceeds to assemble the whole follgws
a well-defined procedure of establishing local equilibrium at each ‘& d ,>
or connecting point of the structure. From such equations the solutiowsf
the unknown displacements becomes possible. Similarly, the electrical or
hydraulic engineer, dealing with a network of~glectrical components
(resistors, capacitances, etc.) or hydraulic conduitp, first establishes a
relationship between currents (flows) amr‘énﬁals for individual
. elements and then proceeds to assemble the system by ensuring continuity
of flows.

All such analyses follow a standard pattern which is universally
adaptable to discrete systems. It is thus possible to define a standard
discrete system, and this chapter will be primarily concerned with estab-
lishing the processes applicable to such systems. Much of what is presented
here will be known to engineers, but some reiteration is at this stage ad-
visable. As the treatment of elastic, solid structures has been the most
developed area of activity this will be introduced first, followed by examples
from other fields, before attempting a complete generalization.



TlHE STANDARD DISCRETE SYSTEM 3

The existence of a unified treatmeént of ‘standard discrete problems’
leads us to the first definition of the finite element process as a method of
approximation to continuum problems such that

(gY'the continuum is divided into a finite number of parts (elements),
\> the behaviour of which is specified by a finite number of parameters,
and
(b) the solution of the complete system as an assembly of its elements
follows precisely the same rules as those applicable to standard
discrete problems.

It will be found that numerous classical mathematical procedures of
approximation fall into this category—as well as the various direct approxi-
mations used in engineering. It is thus difficult to determine the origins
of the finite element method and the precise moment of its invention.

Table 1.1 shows the process of evolution which led to the present-day-
concepts of finite element analysis. Chapter 3 will give, in more detail,
the mathematical basis which evolved from the classical landmarks.!!~2°

1.2 The Structural Element and System

To introduce the reader to the general concept of the discrete system we
shall first consider a structural engineering example of linear elasticity.

Ys

Nodes

x
A typical element (1)

Fig. 1.1 A typical structure built up from interconnected elements
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THE STANDARD DISCRETE SYSTEM 5

.Let Fig. 1.1 represent a two-dimensional structure assembled from indi-
vidual components and interconnected at the nodes numbered 1 to #. The
joints at the nodes, in this case, are pinned so that moments cannot be
transmitted. :

As a starting point it will be assumed that by separate calculation, or
for that matter from the results of an experiment, the characteristics of
each element are precisely known. Thus, if a typical element labelled ¢))
and associated with nodes 1, 2/3 is examined, the forces acting at the nodes
are uniquely dcfined by the displacements of these nodes, the distributed
loading acting on the element (p), and its initial strain, The last may be
due to temperature, shejpgdge, or simply an initial ‘lack of fit’. The forces
and the corresponding displacements are defined by appropriate com-
ponents (U, K and 4, v) in a common co-ordinate system.

Listing the forces acting on all the nodes (three in the case illustrated)
of the element (1)as a matrixt we have

ql U
Q' ={aip ai= {V} ete. (1.1
1 1
q;
and for the corresponding nedal displacements
a]) - u,
a' =<al}; al= { }, etc. , (1.2)
al by :
3

Assuming linear elastic behaviour of the element, the characteristic
relationship will always be of the form

q' = K‘a‘+f,‘,+\f}o / (1.3)

in which f ; represents the nodal forces requireJ/to balance any distributed
loads acting on the element, and f < the nodal forces required to balance
any initial strains such as may be caused by temperature change if the
nodes are not subject to any displacement. The first of the terms represents
the forces induced by displacement of the nodes.

* Similarly, the preliminary analysis or experiment will permit a unique
definifion of stresses or internal reactions at any specified point or points
of the element in terms of the nodal displacements. Defining such stresses
by a matrix ¢! a relationship of the form

: ¢'=S'a'ltol+al (1.4)
t A limited knowledge of matsi bra will be assumed throughout this book.

This is necessary for reasonable conciseness and forms a convenient book-keeping '
form. For readers not familiar with the subject a brief appendix is included in

which sufficient principles of matrix algebra are given to follow intelligently the
development. Matrices (and vectors) will be distinguished by bold print throughout.
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is obtained in which the last two terms are simply the stresses due to the
distributed element loads or initial stresses respectively when no nodal
displacement occurs. '
.- The matrix K® is known as the elemient gij ix and the matrix
S as the element stress matrix for an element (e). ‘ v
Relationships Eqgs. (1.3) and (1.4) have been illustrated on an example
of an element with three nodes and with the interconnection points
capable of transmitting only two components of force. Clearly, the same
arguments and definitions will apply generally. An element (2) ‘of the
hypothetical structure wi]l possess only two points of interconnection,
others may have quite a large number of such points. Similarly, if the
joints were considered as rigid, three components of generalized force and
of generalized displacement would have to be considered, the last corre-
sponding to 2 moment and a rotation respectively. For a rigidly jointed,
three-dimensional structure the number of individual nodal components
‘would be six. Quite generally therefore—

qz ' a,.
o ={%% and a={% (1.5)
as a,,

with each q; and a; possessing the same number of components or degrees

of freedom.
The stiffness matrices of the element will clearly always be square and
of the form
Ki K ... K,
Ke=1: : (1.6)
[x;,. PR K:,,,J

in which K3, etc., are submatrices which are again square and of the size

Ix 1, where ! is the number of force components to be considered at the
f-Lnodes: i :

As an example, the reader can consider a pin-ended bar of a uniform

section 4 and modulus E in a two-dimensional problem shown in Fig.
. 1.2. The bar is subject to a uniform lateral load p and a uniform thermal

expansion strain

, € @T. 7

If the ends of the bar are defined by the co-ordinates x; y; and x,, y, its

"length can be calculated as

L= Vi — 2 +0, - »)%}
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and its inclination from the horizontal as

o= tap-t e
x - .xl
Only two components of force and displacement have to be considered at

the nodes.
The nodal forces due to the lateral load are clearly

U, —sin a
ge = Vil — cosa| pL
P U, —sin « 2
Vulp cos &

and represent the appropriate components of s1mple beam reactions,
pL/2. Similarly, to restrain the thermal expansion go an axial force
(EaTA) is needed, which gives the components

U; (—cos «
V, —sin o
e _ i =
f, = U, cbs @ (EaTA).
Ve o | sina
Finally, the element displacements
(u.
v;

¥ .V, (1) |
VoL |

Fig. 1.2 A pin-ended bar




