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Foreword

There are situations in clinical reality when it would be beneficial to be able to use a
structural and functional prosthesis to compensate for a congenital or acquired
defect that can not be replaced by biologic material.

Mechanical stability of the connection between material and biology is a
prerequisite for successful rehabilitation with the expectation of life long function
without major problems.

Based on Professor Skalak’s theoretical deductions of elastic deformation at/of
the interface between a screw shaped element of pure titanium at the sub cellular
level the procedure of osseointegration was experimentally and clinically developed
and evaluated in the early nineteen-sixties.

More than four decades of clinical testing has ascertained the predictability of
this treatment modality, provided the basic requirements on precision in
components and procedures were respected and patients continuously followed.

The functional combination of a piece of metal with the human body and its
immuno-biologic control mechanism is in itself an apparent impossibility. Within
the carefully identified limits of biologic acceptability it can however be applied
both in the cranio-maxillofacial skeletal as well as in long bones.

This book provides an important contribution to clinical safety when bone
anchored prostheses are used because it explains the mechanism and safety margins
of transfer of load at the interface with emphasis on the actual clinical anatomical
situation. This makes it particularly useful for the creative clinician and unique in its
field. It should also initiates some critical thinking among hard ware producers who
might sometimes underestimate the short distance between function and failure when
changes in clinical devices or procedures are too abruptly introduced.

An additional value of this book is that it emphasises the necessity of respect
for what happens at the functional interaction at the interface between molecular
biology and technology based on critical scientific exploration and deduction.

P-I Branemark



Preface

This book provides the theoretical foundation of Finite Element Analysis(FEA) in
implant dentistry and practical modelling skills that enable the new users (implant
dentists and designers) to successfully carry out FEA in actual clinical situations.
The text is divided into five parts: introduction of finite element analysis and
implant dentistry, applications, theory with modelling and use of commercial
software for the finite clement analysis. The first part introduces the background of
FEA to the dentist in a simple style. The second part introduces the basic
knowledge of implant dentistry that will help the engineering designers have some
backgrounds in this area. The third part is a collection of dental implant applications
and critical issues of using FEA in dental implants, including bone-implant interface,
implant-prosthesis connection, and multiple implant prostheses. The fourth part
concerns dental implant modelling, such as the assumptions of detailed geometry of
bone and implant, material properties, boundary conditions, and the interface
between bone and implant. Finally, in fifth part, two popular commercial finite
element software ANSYS and ABAQUS are introduced for a Branemark same-day
dental implant and a GJP biomechanical optimum dental implant, respectively.

Jianping Geng , Hangzhou
Weiqi Yan Hangzhou
Wei Xu Surrey
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Finite Element Method

N. Krishnamurthy

Consultant, Structures, Safety, and Computer Applications, Singapore
Email: vacnk@ yahoo.com

1.1 Introduction

The finite element method may be applied to all kinds of materials in many kinds of
situations: solids, fluids, gases, and combinations thereof; static or dynamic, and,
elastic, inelastic, or plastic behaviour. In this book, however, we shall restrict the
treatment to the deformation and stress analysis of solids, with particular reference
to dental implants.

1. 2 Historical Development

Deformation and stress anmalysis involves the formulation of force-displacement
relationships. These have been used in increasingly sophisticated forms from the
1660s, when Robert Hooke came out with his Law of the Proportionality of Force
and Displacement.

The nineteenth and twentieth centuries saw a lot of applications of the force-
displacement relationships for the analysis and design of large and complex
structures, by manual methods using logarithmic tables, slide rules, and in due
course, manually and electrically operated calculators.

Particular mention must be made of the contributions of the following scientists,
relevant to modern structural analysis:

1857: Clapeyron Theorem of Three Moments

1864: Maxwell Law of Reciprogal Deflections

1873: Castigliano Theorem of Least Work

1914: Bendixen Slope-deflection Method

References for these works and others to follow are given at the end of the
chapter.

These and other early methods and applications to articulated (stick-type)
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structures were based on formulas developed from structural mechanics principles,
applied to straight, prismatic members such as axial force bars, beams, torsion rods,
¢te.

All these techniques yielded simultaneous equations relating components of
forces and displacements at the joints of the structure. The number of simultaneous
equations that could be solved by hand (between 10 and 15) set a practical limit to
the size of the structure that could be analysed.

To avoid the direct solution of too many simultaneous equations, successive
approximation methods were developed. Among them should be cited the following:

1932: Cross Moment Distribution Method

1940: von Karman and Biot Finite Difference Methods for Field Problems

1942: Newmark Finite Difference Methods for Structural Problems

1946: Southwell Relaxation Methods for Field Problems

These expanded the size limitations outwards by many orders of magnitude,
enabling large complex articulated as well as plate-type structures to be analysed
and designed.

The appearance of commercial digital computers in the 1940s revolutionised
structural analysis. The simultaneous equations were not an obstacle any more.
Solutions became even more efficient when the data and processing were organised
in matrix form. Thus was matrix analysis of structures born.

It was the aeronautical industry that exploited this new tool to best advantage,
but structural designers were quick to follow their lead. By the 1960s, not only
could better and bigger aircraft be manufactured, but large bridges and buildings of
unconventional design could be built.

This also resulted in the computerised revival of the somewhat abandoned earlier
methods of consistent deformation and slope deflection. Not only could much larger
problems be handled, but also effects formerly neglected as secondary (out of
computational necessity) could be included. Pioneers in matrix computer analysis
were:

1958: Argyris-Matrix Force or Flexibility Method

1959: Morice-Matrix Displacement or Stiffness Method

From matrix analysis of articulated structures to finite element analysis of
continuous systems, it was a big leap, inspired and spurred on by the digtal
computer. However, it was not as if the entire idea was new.

Actually, the history of the Finite Element Method is the history of
discretisation, the technique of dividing up a continuous region into a number of
simple shapes. The progress from conceptualisation and formalisation, to
imp lementation and application, may be summarised as follows:

1774: Concepts of Discretisation of Continua (Euler)

1864: Framework Analysis (M axwell)

1875: Virtual Work Methods for Force-displacement Relationships (Castigliano)

1906: Lattice Analogy for Stress Analysis (Wieghardt)

1915: Stiffness Formulation of Framework Analysis (Maney)



1 Finite Element Method 3

1915: Series Solution for Rods and Plates (Galerkin)

1932: Moment Distribution Method for Frames (Hardy Cross)

1940: Relaxation (Finite Difference) Methods (Southwell)

1941: Framework Method for Elasticity Problems (Hrenikoff)

1942: Finite Difference Methods for Beams and Columns (Newmark)

1943: Concept of Discretisation of Continua with Triangular Elements (Courant)

1943: Lattice Analogy for Planc Stress Problems (McHenry)

1953: Computerisation of Matrix Structural Analysis (Levy)

1954: Matrix Formulation of Structural Problems (Argyris)

1956: Triangular Element for Finite Element Plane Stress Analysis (Turner, et al.)

1960: Computerisation of Finite Element Method (Clough)

1964: Matrix Methods of Structural Analysis (Livesley)

1963: Mathematical Formalisation of the Finite Element Method (Melosh)

1965: Plane Stress and Strain, and Axi-symmetric Finite Element Program

(Wilson)
1967 Finite Element Method in Structural and Continuum Mechanics
(Zienkiewicz)

1972: Finite Element Applications to Nonlinear Problems (Oden)

Old theories of solid continua were reexamined. Up to the 1950s, only
continuous uniform regions of some regular shape such as square and circular plates
or prisms could be analysed with closed form solutions. Some extensions were made
by conformal mapping techniques. Series and finite difference solutions were
developed for certain broader class of problems. But all these remained in the
domain of academic pursuit of theorctical advancement, with few general
applications and limited practical use.

Again, it was the aircraft industry that pioneered the idea of analysing a region
as the assemblage of a number of triangular elements. The force-displacement
relationships for each element were formulated on the basis of assumed
displacement functions. The governing equations resulted after approximately
assembly modelled the behaviour of the entire region. Once the equations were
formulated, further solution followed the same steps as the matrix structural
analysis.

The idea worked, and very efficiently with computers. It was also confirmed
that the finer the division, the better the results. Now the aircraft designers could
consider not only the airframe, but the fuselage that covered it and the bulkheads
that stiffened it, as a single system of stress bearing components, resisting applied
forces as an integrated unit.

This technique came to be called the “Finite Element Method” (“FEM” for
short), both because a region could be only broken up into a finite number of
elements, and because many of the ideas were extrapolated from an infinitesimal
element of the theory to a finite sized element of practical dimensions.

Clough and his associates brought this new technique into the civil engineering
profession, and soon engineers used it for better bridges and stronger shells.
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Mechanical engineers exploited it for understanding component behaviour and
designing new devices.

Computer programs were developed all over the Western world and Japan. The
first widely accepted program was “SAP” (for Structural Analysis Package) by E.L.
Wilson, which got him a Ph.D. from the University of California, USA. Most
programs were in FORTRAN, the only suitable language at the time. Soon there was
a veritable explosion in programs, and today, there are scores of packages in recent
languages which are menu-driven and automated to the extent that with minimal
(self-)training, anybody can do a finite element analysis for better or for worse!

Purists viewed the early applications with considerable reservation, pointing out
the lack of mathematical rigour behind the technique. Appropriate responses were
not slow in coming. Melosh and others soon connected the assumptions behind the
formulation of the element with the already prevalent classical methods of
interpolation functions.

Argyris in Europe, Zienkiewicz in UK, and Clough, Wilson, Oden, and numerous
others in USA, pushed the frontiers of finite element knowledge and applications
fast and wide. Between the 1950s and 1970s, applications of the finite element
method grew enormously in variety and size, supported or triggered by fantastic
developments in digital computer technology. In the last two decades, new
developments have not been so many, but practical applications have become wider,
easier, and more sophisticated.

Farly users, the author included, considered hundred elements as a boon. A
decade later, third generation computers enabled analysts to routinely use thousands
of elements. By the 1970s, capacity and speed had increased ten times further.
Nothing seemed to be beyond reach of finite element analysis whether it be a
nuclear reactor (Fig. 1.1(a),(b),(c)), or a tooth (Fig. 1.1(d)), both of which the author
has analysed.

Fig. 1.1 (a) Test Model of Prestressed Concrete Nuclear Reactor; (b) One-twelfth Symmetry
Segment for Analysis; (c) 3-D Finite Element Idealisation of the Analysis Segment; (d) 3-D
Finite Element Idealisation of a Tooth

Now, computer packages which once demanded a mainframe have come to the
desk top, and been loaded with powerful program graphics user interfaces, and
interactive, online modelling and solutions.
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It was just a small imaginative step to extend the applications beyond linear
structural analysis, to non-linear and plastic behaviour, to fluids and gases, to
dynamics and stability, to thermal and other field problems, because all of them
involved the same kind of differential equations, differing only in parameters and
properties, while the overall formulation, assembly, and solution techniques
remained the same.

The references of historical importance, given at the end of the chapter, are
merely representative, often the earliest in a series of many publications on a topic
by the same or other authors. More detailed coverage of the history and further
references may be found in the works by Cook, Desai, Gallagher, Huebner, Oden,
Przemieniecki, and Zienkiewicz. Readers can referr to these resources for additional
information on any of the topics discussed by the author in the following chapters.

Today, there is almost no field of engneering, no subject where any aspect of
mechanics is involved, in which the finite element method has not made and is not
continuing to make significant contributions to knowledge, leading to unprecedented
advances in state of the art and its ultimate usefulness to mankind including
contributions to dentistry.

1. 3 Definitions and Terminology

The basic procedure for matrix analysis depends on the determination of
relationships between the “Actions”, namely forces, moments, torques, etc. acting
on the body, and the corresponding “Displacements”, namely deflections, rotations,
twists, etc. of the body.

A “structure” is conventionally taken to consist of an assembly of straight
“members” (as in trusses, frames, etc.) or curved lines whose shape can be
mathematically evaluated, which are connected, supported, and loaded at their ends,
called “joints”. Fig.1.2(a) shows a two-storey structure consisting of frames in the
vertical plane, grids in the horizontal plane, and trusses for the entrance canopy.

A “system” conventionally consists of a continuous membrane, plate, shell, or
solid, single or in combination, each divided for analysis purposes into a finite
number of “elements”, connected, supported, and loaded at their vertices and other
specified locations on edges or inside, called “nodes”. Systems may include
structures as well.

Fig 1.2(b) shows a machine part system consisting of a solid, thin-walled shell,
and a projecting plate. The suggested divisions are shown in lines of a lighter shade.
Generally, the curved boundaries will be modelled as straight lines. The circular pipe
in this case will be simulated as a hexagonal tube.

The principal difference between a structure and a system is this: The
articulated structure is automatically, naturally, divided into straight (and certain
regularly curved) members such as the truss member AB in Fig 1.2(a), whose
behaviour is well known and can be formulated theoretically. On the other hand, the
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GRID
(a) (b)

B
A

TRUSS e
FRAME - g

Fig. 1,2 (a) Two-storey Articulated Structure; (b) Machine Part System, Continuum

continuous system has no such theoretical basis and has to be divided into pieces of
simple shape, such as the triangle [JK in Fig. 1.2(b), whose behaviour must be
formulated by special methods.

Most real-life facilities involve a combination of both types described above. For
instance, a building has flat plate-type walls and floors; a machine may sit atop
columns and beams. In practice, “member” and “joint” usually apply to a structure,
while “element” and “node” apply to a system in particular, and to a structure also
in general.

Each node or joint can have a number of independent action (force or moment) or
displacement (deflection or rotation) components called “ Degrees Of Freedom”
(DOF) along a certain direction corresponding to coordinate axies.

A plane truss member such as AB in Fig. 1.2(a) shown enlarged in Fig 1. 3(a)
has two DOF at each joint. Hence the member has a total of (2X2) or 4 DOF.

(a) @TB

o o

Fig. 1.3 (a) A Truss Member AB; (b) A Triangular Finite Element IJK

A triangular membrane element such as IJK in Fig. 1.2(b) shown enlarged in Fig
1.3(b) has two DOF at each node. Hence the element has a total of (3X2) or 6 DOF.

Different types of members and elements have different numbers of DOF. For
instance, a 3D frame member has two joints and six DOF (3 forces or displacements
and 3 moments or rotations) per joint and 12 DOF in total. A solid “brick” element
has eight nodes and three DOF (3 forces or displacements) per node and 24 DOF in
total.

Additionally, in the case of finite elements, joint the same type of element may
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even have different number of nodes in “transition” elements.

1. 4 Flexibility Approach

Fig 1.4 shows a truss member with actions and corresponding displacements along
the two DOF at each end. The sets of four actions and displacements can be
represented vectorially or in terms of x, y components, as follows:

{A} = {A, Ay, Ay, A} = (X, Ys, X, Y;}, the “Action Vector”
{D}={D,, D,, Ds, D,} = {u;, vi, u;, v;}, the “Displacement Vector”

The displacement D at every DOF (say I) is a function of the actions A, A,, at
all connected DOF. Within the elastic limit, D; is a linear combination of the effects
of all actions.

Thus, their relationship may be written as:

D= A+ o Ao+ £ As+ 1, Ay (1.1)

in which f; stands for the displacement at DOF I
due to a unit action at DOF J, and is known as the
“Flexibility Coefficient”.

Three more such equations may be written for
D;, D;, and D,. The four equations may be
represented in matrix form as:

{Dy=LF]- {A} (12)

4X1 4X4  4X|

Fig. 1.4 Displaced Truss
Member

in which, the [F] matrix of flexibility coefficients
is known as “Flexibility Matrix”.

The flexibility coefficients for prismatic bars can be determined from basic
theoretical principles of strength of materials and theory of structures.

The flexibility approach was quite popular as the “Force Method” for manual
analysis, the “Method of Consistent Deformation” being a typical application. With
the advent of computers, it was found that this approach was not convenient to
formulate or solve large and complex problems. Hence, the flexibility approach was
not pursued further for practical applications.

1. § Stiffenss Formulation

1. 5.1 Stiffness Matrix

An alternative formulation, an exact opposite—in fact the inverse—of the flexibility
approach, called “stiffness approach” or “displacement approach” was also in use
for manual solutions. The “Slope Deflection Method” for continuous beams and the
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“Moment Distribution Method” for beams and frames were very popular.

This approach was very convenient for computerisation and became the
preferred method for computer solutions, especially for finite element analy sis.

In general, the displacement along every DOF needs an action along that DOF
and reactions at all the other connected DOFs for equilibrium. For elastic behaviour,
the function is a linear combination of all the displacement effects.

Thus, the action-displacement relationships of the truss member in Fig 1.4 is
written as:

A=k\Di+kpDy+kisDy+ ki Dy
A= kz1 DWL kzz Dz"’kza D3+kz4 D4
As=ky D+ ks Do+ ks Da+ kyy Dy
As=ky D+ ko Dy + kiy Dy + ko D, (1.3)

in which k; stands for the action at DOF I due to a unit displacement at DOF J
(with all other displacements set to zero) and is known as the “ Stiffness
Coefficient”.

The four Eq.(1.3) may be represented in matrix form as:

{Ay=[k] {D} (14

4X 1 4X4 4X1

in which the [k] matrix of stiffness coefficients is known as “Stiffness Matrix”.
The stiffness coefficients for prismatic bars can be determined from basic
theoretical principles of strength of materials and theory of structures.
For instance, consider the truss member AB, of length L and cross-sectional area
A, from a material with Young's Modulus of elasticity E, inclined at an angle § with
the horizontal, subjected to a unit displacement along DOF 1, as shown in Fig 1.5

().

A=A sinb ;
(a) B (b) B

o P~
& 4, =4 cosé
m'y) !
. \‘,Q\W /Il
= Ay
D=c0s0 Lo
/

N D, A,=4,cos6 f Y/ \
=1 ( 4

A,=kD,

A, lwos()’ L A ,sin
Fig. 1.5 (a) Unit Global Displacement; (b) Action Components

The unit horizontal displacement D, resolves into an axial displacement D=1 »
cosf = cosf) and a transverse displacement D, =1 * sinf = sind.

As the truss member ends are pinned, only the axial displacement D, needs a
force A= kDj, or kcosf, k being the stiffness of the axial force bar, namely (EA./L).

As shown in Fig 1.5(b), this axial force A, may now be resolved into:



