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Foreword

In a liquid crystal watch, the molecules contained within a thin film of the
screen are reorientated each second by extremely weak electrical signals. Here
is a fine example of soft matter: molecular systems giving a strong response to
a very weak command signal.

They can be found almost everywhere. Soft magnetic materials used in
transformers exhibit a strong magnetic moment under the action of a weak
magnetic field. Take a completely different domain: gelatin, formed from col-
lagen fibres dissolved in hot water. When we cool below 37°C, gelation occurs,
the chains joining up at various points to form a loose and highly deformable
network. This is a natural example of soft matter.

Going further, rather than consider a whole network, we could take a single
chain of flexible polymer, such as polyoxyethylene [POE = (CH,; CH; O)y,
where N ~ 10°], for example, in water. Such a chain is fragile and may break
under flow. Even though hydrodynamic forces are very weak on the molecular
scale, their cumulated effect may be significant. Think of a rope pulled from
both ends by two groups of children. Even if each girl and boy cannot pull
very hard, the rope can be broken when there are enough children pulling.

POE, added to water at homeopathic dose levels, completely transforms
its hydrodynamic properties (take, for example, the experiment devised by
James in Toronto). We see here another aspect of soft matter: the fact that
an additive, in very small quantities, can change everything. A whole practical
area of science, called formulation, is based on the study of such additives,
whether it be an ink, a paint, a medicine, or a product for treating vines. In
this sense, soft matter physics is directly concerned with industrial problems.

But it also touches upon some quite fundamental questions, as we see from
the history of long-chain molecules. It took a very long time just to realise
that such things existed, a step taken by Staudinger in 1920; and then to
establish that they are usually flexible, the fundamental idea put forward by
Kuhn in 1940. Following this, their statistical conformations were described,
the great triumph of Flory in the 1950s. And finally, the deep connection
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between chain conformations and the trajectories of quantum particles was
the superb idea, developed by Edwards in the 1960s, which meant that fifty
years of theoretical knowledge acquired in atomic and nuclear physics could
be transposed to polymers. '

A quite analogous story could be told about detergents or, as they are rather
pompously called, surfactants. Soap bubbles fascinated Gibbs a hundred years
ago, inspiring him to construct a thermodynamic theory of interfaces. In our
own time, the discovery of vesicles, curious and flaccid objects, has opened up
a whole new chapter in the science of surfactants. Extremely rich statistical
problems are raised by these soft surfaces, and their analysis is a distant cousin
of the string theories at present under development in elementary particle
physics.

The aim of the present book is not to enter into the labyrinth of theory,
but rather to show, using relatively simple examples, how concept and exper-
iment relate today, with regard to everyday subjects, such as soaps, rubber,
emulsions, plastic, grains in suspension, and so on. Thanks to all those who
have taken part in this project, and especially to M. Daoud and C. Williams,
patient shepherds for a capricious flock of researchers.

February 1995  P.G. de Gennes



Preface

In the short time interval between the publication of “La Juste Argile” and
“Soft Matter Physics”, we were saddened by the fact that R. AUDEBERT
passed away. He was a brilliant chemist and physical chemist working at the
Ecole Superieure de Physique et Chimie Industrielle de Paris. Besides his re-
markable skills and intuition, he was also characterized by his availability and
nice character. Even when overwhelmed with other work, he would always
find time to listen and try to help. We would like to dedicate this book to his
memory.

Clay, like many other materials, has to be prepared in a very specific way. If
you add too much water, it is not good, because it flows. If there is not enough
water on the other hand, it is too hard, and cannot be worked. Thus, there is a
well defined proportion of water that has to be added in order to produce the
perfect clay. Many other materials have similar properties and their practical
use stems from this. Polymers, for instance — or plastics, as they were called
not so long ago — have visco-elastic properties that allow the sample to take
on any desired shape, and to keep that shape for extended periods of time.
This is one of the key points in the use of these materials, not only as plastics,
but also for fabrics, paints, adhesives, and several other existing applications;
together with others to come, such as very light batteries for electric vehi-
cles. Similarly for colloids, where wide applications exist in cosmetics and the
food industry, to give but two examples. Or liquid crystals, commonly used
in display devices that have completely changed the clock and watch making
industry, for instance. All these new materials share common properties, such
as strong reactivities with regard to certain external fields. Each of them has
been studied for a long time as such. But gradually, the idea has emerged that
they constitute a new class of materials. Because of their specific properties,
this class was called “Soft Condensed Matter”. Indeed, a liquid crystal is crys-
talline along some directions, but liquid along the others. Similarly, polymers
are liquid on very long time scales, but solid on short ones. Therefore, they do
not behave classically, but often in a non-linear way. Much of the physics be-
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hind these systems is controlled not by averages but by fluctuations. In many
instances, phase transitions are present, or the behavior of the system is closely
related to what happens near a phase transition, even if none should actually
occur. This is the case for polymer solutions or for the sol-gel transition, for
instance. It then becomes important to determine whether or not there is any
characteristic length or time in the material, and try to determine the relation
between the latter and macroscopic properties. From this point of view, there
are strong similarities between Soft Matter and phase transitions that occur at
the Curie temperature, when a magnet loses its magnetization. This explains
why the first systems that were considered were closely related to phase tran-
sitions. But later models — such as the so-called diffusion limited aggregation
model — were growth models, which were not even at equilibrium. Thus both
topics eventually split, and had independent evolutions. An important notion
that proved to be very helpful, at least for modeling these materials, is that
of fractals. These are nice models that are treated elsewhere, and may model
perfectly soft matter, showing why the properties are so different from conven-
tional ones. All these subjects have been taught at universities, usually at an
advanced level. The purpose of this book is to present in a simple and direct
way these materials in a single, hopefully didactic, work for a broader audience.
It was felt that the time has come to try to reach students, college professors
and engineers rather than just university professors. The various chapters in
the book are devoted to those topics that we believe we understand best at the
present time. They are written by experts in these fields, who have attempted
to show basic effects through simple experiments, that might easily be carried
out by anyone. Our goal was to present the bases that are common to all of
these materials, and probably to others, and not to show the latest discoveries,
which might fade away with time. A choice of topics had to be made: Wetting,
Liquid Crystals, Polymers, Colloids, and Fractals. We believe that they- are
representative of the domain, and that they will help the reader move on to
further study, even in topics that are not covered explicitly here. These topics
are also the ones that were pioneered by de Gennes.

January 1999

Saclay — Paris, _ Mohamed Daoud
Orsay Claudine E. Williams
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1. Droplets: Capillarity and Wetting
F : Brochard-Wyart

1.1 Introduction

Rain is falling outside. Water droplets run down the window pane leaving a
trail of water behind them, and on the terrace large puddles have formed,
where the drops which continue to fall create wavelets on the surface of the
water, spreading out to the sound of the rain. Little necklaces of shiny droplets
hang under the balustrade and the stems of the wysteria, slowly swelling, as
if breathing, then falling suddenly to explode on the ground in a contracting
splash of water. Rather than sink into the gloom of a rainy day, let us observe
the magic of these droplets at closer quarters.

We shall tell a story of droplets and films, that could be lived out in your
kitchen or bathroom, in a primary school and, in a more quantitative way,
before a class at high school, or in a university. Capillarity is the study of
moving interfaces which can deform so as to optimise their surface energy.
Wetting is the study of the spreading of droplets when they are placed on a
solid or liquid substrate.

We shall begin by introducing the fundamental physical quantities, together
with the laws which govern them. We shall then describe five experiments
which illustrate the static and dynamical properties of wetting. In each section,
we shall indicate the equipment needed to carry out the experiments, as well
as certain related industrial applications. In conclusion, some more specialised
themes will be brought up: wetting on the nanometre scale, instability of the

contact line, and the Marangoni effect, all of which require more sophisticated
instrumentation.

< Fig. 1.0. Raindrops on roses
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1.2 The Players and the Rules of the Game

1.2.1 Surface and Interfacial Tension

In a liquid, molecules are in a condensed state and experience cohesive inter-
actions with neighbouring molecules (see Fig. 1.1). On the surface, a molecule
remains in contact with only a half-space, and thereby loses about half of
its cohesion energy u. This energy loss is the origin of the surface tension
v =~ u/a?, where a? is the mean area occupied by the molecule at the surface.
For a simple liquid, where interactions are exclusively of van der Waals type,
withu =1/40eVand a =3 A, we obtain v =~ 40 mJ m~2. Table 1.1 shows the
values of v measured for some liquids. In water, the high value v = 72 mJ m~2
is due to the presence of hydrogen bonds. In the case of mercury, a liquid
metal, u is large (=~ 0.3 eV) and v ~ 486 mJ m~2. It is widely known that
mechanical energy must be provided in order to create surface area, when mak-
ing mayonnaise or beating eggs. Indeed, <y can be defined as surface work; to
increase the surface area A by dA, work dW = vdA must be done. In dimen-
sions, [y] = EL™2 = FL™!. The usual units for v are [mJ m~2]. Surface tension
contributes to the work in thermodynamics, increasing the internal energy U
or the free energy F:

= oUu _OF
OAlsvin,  9Alrvn,

Surface tension can also be viewed as a force. Consider the experiment in which

a rectangular frame with moveable side is dipped into soapy water (see Fig.

1.2). In order to move the side through dz, work dW = 2ydA = 2vldz must
be done, the factor of two being due to the presence of two interfaces. v is

A G
\)/‘\(/
( \
l ‘\\ /
N - L

Fig. 1.1. Physical origin of surface tension: a molecule at the surface loses part of its cohesive
interaction compared with a molecule in the body of the liquid



