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Preface

Complex analysis and p-adic analysis are two closely linked, old branches of
mathematics that have played a prominent role in the development of modern
mathematics. The recent advancements, new results and applications of complex
analysis and p-adic analysis are rather extensive. In this volume, the focus centers
on those topics which pertain to two intrinsic properties of analytic functions;
namely,

1. Value distribution and

2. Complex differentiability.

In the contemporary parlance, value distribution theory is also known as Nevan-
linna theory; a theory that R. Nevanlinna introduced in the 1920s in conjunction
with his investigation of the growth of entire and meromorphic functions. Since
then, analogous theories have been propounded and developed for algebroid func-
tions, stibharmonic functions, holomorphic and meromorphic mappings. These,
combined with geometric analysis, led to extensions and generalizations of Picard’s
Little Theorem for holomorphic and meromorphic mappings over complex and p-
adic fields.

Differentiability is a fundamental notion which has important ramifications in
analysis. It has led to many significant concepts such as the Fréchet and Gateaux
differentials and subdifferentials and it has also provided the framework, for ex-
ample, via the Cauchy-Riemann system, for studying certain partial differential
equations. With the aid of the universal Cauchy kernel, the theory of generalized
analytic or pseudo-holomorphic functions (in the sense of I. N. Vekua and L. Bers,
respectively) allows one to solve, by complex methods, general (uniformly elliptic)
linear or non-linear first-order systems.

During the past several decades, value distribution theory (of complex or p-adic
meromorphic functions) has been the main tool in the investigation of factoriza-
tion theory, value sharing (unicity) or growth of meromorphic functions, and the
existence of an admissible meromorphic solution of a functional equation over a con-
stant field or a small function field. In addition, several international conferences
and the numerous research articles published on these topics further underscore
the importance of value distribution theory in several branches of mathematics.

The main aim of the present collection is two-fold: 1. To provide a forum
for timely surveys, new results, techniques, generalizations, extensions, and new
trends or applications in areas related to value distribution and differentiability
of complex or p-adic meromorphic functions. 2. To include (in a separate part),
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as an enhancement of the collection, English translations of relevant contributions
that were written in Russian around 1990s and were heretofore available only in
Russian as internal publications of the Tbilisi State University.

The book consists of twenty chapters arranged in three parts, Part I, II and IIL
Part I consists mainly of six surveys about the second main theorem in general-
ized parabolic manifolds; uniqueness polynomials; p-adic value distribution; recent
developments of Petrenko’s theory of growth of meromorphic functions; linear op-
erators, Fourier transforms and the Riemann £-function (a function closely related
to the Riemann zeta-function). Part I concludes with two research notes; one is
about the hyperbolic hypersurfaces of lower degrees and the other is about the
admissible solutions of functional equations of diophantine type.

Using the techmiques of Bers’ pseudo-holomorphic functions, Part II starts
with a contribution constructing complete systems of solutions to the stationary
Schrédinger equation. Moreover, one chapter of Part II applies value distribution
theory to subfunctions of the time-independent Schrédinger operator. Generally
speaking, Part IT and Part III deal with applications of complex analysis to differ-
ential equations. This includes also ordinary differential equations (in the complex
plane), as Chapter 12 shows. Chapter 13 applies value distribution theory also
to partial differential equations. Using the Cauchy-Riemann operator of' Clifford
analysis, complex methods can.also be applied to higher dimensional problems.
Whereas the usual basis vectors of Clifford analysis satisfy the relations

€2 =71, eiej +eje;=0,4,j=1,--+,n, i #J,
the generalized Clifford algebras depend on parameters. Their basis vectors satisfy
the relations
e? = —Qy, €i€; +€jei = 2’712]': 7';] = 1,' ce T, 7'7é j1

(see Chapter 14 in Part II). The Cauchy-Riemann operator in such parameter-
dependent Clifford algebras leads to more general systems of partial differential
equations. Also G. C. Wen’s hyperbolic numbers j (with 5% = +1) are included in
this concept (see the Chapters 15 and 16).

Part III deals with boundary value problems for generalized analytic vectors in
the complex plane. However, in light of the ongoing research, it is expected that
the techniques developed in Part IIT will also be useful when investigating systems
of partial differential equations in higher dimensions.

The editors take this opportunity to thank all the authors for their nice contri-
butions. They are also grateful to V. Azarin, S. Edwards, and P.-C. Hu for their
reviewing work, and to G. Akhalaya and N. Manjavidze for their translation of
the contributions in Part III. Finally, the editors are pleased to acknowledge the
endorsement of Science Press, Beijing, China.

A. Escassut, W. Tutschke and C. C. Yang.



List of Contributors

‘'Ta Thi Hoai An, Institute of Mathematics, Vietnam
e-mail: tthan@math.ac.vn

Georges Csordas, University of Hawaii at Manoa, U.S.A.
e-mail: george@math.hawai.edu

Alain Escassut, Université de Clermont-Ferrend II (Blaise-Pascal), France
e-mail: Alain.Escassut@math.univ-bpclermont.fr

Pei Chu Hu, Shandong University, China
e-mail: pchu@sdu.edu.cn

Alexander I. Kheyfits, The Graduate Center and Bronx Community College
of the City University of New York, U. S. A.
e-mail: akheyfits@gc.cuny.edu

Kira V. Khmelnytskaya,

Centro de Investigacién y Estudios Avanzados del Instituto Politécnico Nacional,
Mexico

e-mail: kiraprivate@yahoo.com.mx

Ha Huy Khoai, Institute of Mathematics, Vietnam
e-mail: hhkhoai@math.ac.vn

Vladislav V. Kravchenko,

Centro de Investigacién y Estudios Avanzados del Instituto Politécnico Nacional,
Mexico

e-mail: vkravchenko@qro.cinvestav.mx

Ilpo Laine, University of Joensuu, Finland
e-mail: ilpo.laine@joensuu.fi

Boris Yakovlevich Levin (1906-1993), Kharkov State University, Ukraine

Bao Qin Li, Florida International University, U.S.A.
e-mail: libaoqin@fiu.edu

Ping Li, University of Science and Technology of China, China
e-mail: pliQustc.edu.cn

Giorgi F. Manjavidze (1924-1999), Thilisi State University, Georgia

Ivan Ivanovich Marchenko, University of Szczecin, Poland



iv List of Contributors

e-mail: marchenko@wruf.univ.szczecin.pl

Kazuya Tohge, Kanazawa University, Japan
e-mail: tohge@t.kanazawa-u.ac.jp

Wolfgang Tutschke, Graz University of Technology, Austria
e-mail: tutschkeQtugraz.at

Carmen Judith Vanegas, Universidad Simén Bolivar, Venezuela
e-mail: cvanegas@Qusb.ve

Guo Chun Wen, Peking University, China
e-mail: wengc@pku.edu.cn

Pit-Mann Wong, University of Notre Dame, U. S. A.
e-mail: pmwong@nd.edu

Philip P. W, Wong, University of Hong Kong, China
e-mail: ppwwong@maths.hku.hk

Zuo Liang Xu, Renmin University of China, China
e-mail: xuzl@Qruc.edu.cn

Chung Chun Yang, Hong Kong University of Science and Technology, China
e-mail: mayangQ@ust.hk



Contents

Preface

List of Contributors

Part I Value Distribution of Complex and P-adic Functions
Chapter 1 The Second Main Theorem on Generalized Parabolic

IVIATIEOIAS « «+ +« oo v e tmrenamreassae et ena e eaneonaranenennns 3
1.1 Monge-Amperé equations and generalized parabolic manifolds------- 5
1.2 Projectivized bundles over Stein manifolds - -« -ocvieriiint 10
1.3 'Meromorphic global forms .......................................... 17
1.4 Analytic and algebraic Pliicker Formulas: The classical case -+« - 21
1.5 Pliicker’s formulas for generalized parabolic manifolds -« «»¢ccrv0v e 28
1.6 An analogue of the Ahlfors-Stoll estimate--«--«---++-cereereeenan.. 32
1.7 The Second main theorem ------------------------------------------ 36
Chapter 2 P-adic Value Distribution ...+ ---covvvienninin 42
2'1 Ultrametric analytic functions ...................................... 44
2.2 Lazard’s problem and p-adic Nevanlinna theory -« -« oeveeevennne. 75
2.3 Applications of the Nevanlinna theory-«-«--+--+-vcvovivivennn 102
Chapter 3 Survey on Meromorphic Functions of Uniqueness---:--- 139
3.1 Introduction and basic results ..................................... 139
3.2 Maln results and examples ........................................ 142

Chapter 4 A Survey on Uniqueness Polynomials and Unique Range

Sets ........................................................... 148
4.1 Meromorphic functions sharing points:-«---c oo v 148
4.2 Unique range set for meromorphic functions: -« - coevveeennan. 150
4.3 Uniqueness polynomials for meromorphic functions-----«-+-«-c -+ 153

Chapter 5 On Petrenko’s Theory of Growth of Meromorphic

Fu_ncticns ..................................................... 164
5.1 The growth of functions meromorphic in the plane -+« --+-«+.--- .. 165
5.2 The growth of functions meromorphic in the dis¢---+-«----+------. 171

5.3 Separated maximum modulus points of entire and meromorphic
functions .......................................................... 174



vi Contents

5.4 Strong asymptotic values and strong asymptotic spots of entire and
meromorphic FUNCLIONS »» +rvrrerserrerntteenrrsnriaseanrtareraaras 179

Chapter 6 Linear Operators, Fourier Transforms and the Riemann

E_function .................................................... 188
6.1 The Laguerre-Pélya class and the Riemann £-function -+« -vvv-v. . 189
6.2 Complex zero decreasing sequences and A-sequences:--------------- 196
6.3 The distribution of zeros of Fourier transforms «««--« - oveevenen. 201

6.4 Infinite order differential operators and the Riemann £-function - - - 207

Chapter 7 Hyperbolic Hypersurfaces of Lower Degrees:---------.- 219

7.1 Introduction and main techniques: -+« -vcrererreiaiiiii 219

7_2 Hyperbolic curves ------------------------------------------------- 220

7'3 Hyperbolic surfaces ............................................... 225

7.4 Hyperbolic hypersurfaces in P4 (C) vrrvrerrrer e 234
Chapter 8 Admissible Solutions of Functional Equations of

: Diophantine Type ........................................... 250

8.1 INtroduction «« -cvcrrcrrrrmrtneria it it 250

8'2 Background and results ........................................... 252

8_3 Preliminary lemmas ............................................... 257

84 Proofs of the results .......................... N 259

Part II New Applications of the Concept of Differentiability

Chapter 9 Recent Developments in Applied Pseudoanalytic Function

9. 1 Introduction ...................................................... 267

9.2 Some definitions and results from pseudoanalytic function theory - - 270
9.3 Solutions of second order elliptic equations as real components of

complex pseudoanalytic functions -« -----rcreeriiiiiiiiiin 276
9.4 Complete systems of solutions for second-order equations---------- 287
9.5 A remark on orthogonal coordinate systems in a plane «+-+«--.. .. 289
9.6 Explicit construction of a generating sequence: - «««-«-c-coreeenens 290

9.7 Explicit construction of complete systems of solutions of second-order
elliptic equations .................................................. 294

Chapter 10 Biquaternions for Analytic and Numeridal Solution of

Equations of Electrodynamics-----««-r-erneeriieiia. 301
10' 1 Introduction ..................................................... 301

10.2 Biquaternionic fundamental solutions - -« -+---coev-ee s e 302



Contents vii
10.3 Biquaternionic reformulation of Maxwell’s equations in chiral
TOEAIA v v e et e e e 304
10.4 Completeness of a system of biquaternionic fundamental
GOLULEOIIE + + + v v e et e et s et et e e e et 304
10.5 NUMETrical TEAliZALIOTL « -+ v« v vt vevsrrnereanererenreenenereanenns 307
10.6 Time-dependent Maxwell’s equations for chiral media ---.------.. 309
10.7 Field equations in a biquaternionic form -+« -« vvoveeniiiiiii, 310
10.8  Green function for the operator M+~ - covviiiiiiiil 311
10.9 InhomOgeneous media:««««««««««xreremmmnminaanieeeeeiiaaaeaas 314
Chapter 11 Asymptotic Behavior of Subfunctions of Time-
Independent Schrédinger Operators- -+ ----cvovvvvie 323
11,1 INtTOQUCEIOM  + =+ - v e v v e v meenraseneanee et aereee et aeenennenn, 323
11.2  Subfunctions of the operator Lg«« -« «crrrreeeersimiiiiiiainnanen 396
11.3 Phragmén-Lindeldf theorem for subfunctions in an n-dimensional
COTIE =+ + s " e rn st tat s nentanen s aenneaaenaeaeaatenranaatannen e, 329
11.4 Bilinear series and estimates of the Green’s function of the operator
L4 with a radial potential in a cone -+« vorviv i 345
11.5 The BlaschKe theoremmn -« -« ccvrererernnrnenenentrearnneninnanns 355
11.6 Generalization of the Hayman-Azarin theorem «+««++e-vvvevvvenn. 363
11.7 Subfunctions in tUbe dOmAINS -« -+« +« v vrrerrnrmreraeenenennnns 370
11.8 Green'’s function of the operator Lg -+« rrrrerrerrernii.. 374
11.9 Eigenfunctions of the Laplace-Beltrami operator on the unit
SDDELE ettt e 385
11.10 Asymptotic behavior of solutions of the equation y”(r)+
(n— l)r_ly’(r) - ()\7.—2 + q(r)) Yr) =0 oo 389
Chapter 12 The Bank-Laine Conjecture-a Survey «««----«+ooovvvenn. 398
1 2.1 Introduction ..................................................... 398
12.2 Elementary computations and examples:---«++voeereiiiiiiin. 400
12.3 First results towards the Bank-Laine conjecture------+--«covvn.os 404
12.4 Solutions with prescribed zero-sequences -+« --++vviveiiiiiiint 407
12.5 Bank-Laine SeqUences -« -« «teeererremmmmuniiiniainaeeeeeaa.. 408
12.6 Bank-Laine fUNCEIONS « « -« -« v« v cxrreronernemenmrnnrenrnenneeenns 410
12.7 The case of a Meromorphic A(2) ««« -« v cerreerreerieraineain., 412
12.8 Bank-Laine functions in the unit disc - -+ ----vooovvieiiiin. 415
Chapter 13 On Complex Solutions to Functional and Non-linear
Partial Differential Equations «----«««-«crvvrrreeeeeeeo .. 418
13.1 TDtrOduCtion « - crevenerrnarnrnnn e 418
13.2 The equation f2 + g% = 1 and related eikonal type equations -« - - - 419



viii Contents

13.3 Factorization of partial derivatives and its relation to partial

diﬂ'erential equations ............................................. 422
13.4 Exact entire solutions of generalized Eikonal and Fermat

EQUALIOTIS * =+ ++ v+ v v e ettt e e e 494
13.5 Eikonal and Fermat equations with arbitrarily many terms-..-..- 426

Chapter 14 Clifford Algebras Depending on Parameters and Their

Applications to Partial Differential Equations---------. 430
1417 THIETOAUCHIOM « «  + + « « v s e emreaneenananenenenasnsroneossosesnsnnons 430
14.2 Clifford algebras depending on parameters -+ «--<-+vovervivinnis 433
14.3 Generalized Clifford analysis -« -« ««««+ vrreerereermiiainininn... 437
14.4 Concluding remarks: - -« eeeerrrerermriereeriiiiienaii.. 447
Chapter 15 Application of Complex Analytic Method to Equations
of Mixed (Elliptic-Hyperbolic) Type «- -+ -«coevemene... 451
15.1 Oblique derivative problem for second order equations of mixed type
with parabolic degeneracy ««««««=c«tttrrriarareriiiinneianaai.. 451
15.2 Oblique derivative problem for second order elliptic equations with
parabolic degeneracy -« +tvrrrrrireetianiion.. e, 456
15.3 Oblique derivative problem for degenerate hyperbolic equations of
SOCOTIA OTCET *  + + « « o v v e et e et antenaenaneen e senanseneanenrenns 461
15.4 Oblique derivative problem for second order equations of mixed type
with parabolic degeneracy - -« -« ««eereeraeretrimiineenaiian, 465
15.5 Complex analytic method for mixed equations with parabolic
degeneracy and some open problems -« -+« -voriiiii i 470

Chapter 16 The Tricomi Problem for Second Order Equations of

Mixed TYPe -« ccceerreeremmmmmmmniiiiariiiaeeiinaena.. 474
16.1 Formulation of the Tricomi problem for mixed equations with
degenerate TAnK 0« - -« ««xrvvemnetmanaaiien ettt A74
16.2 Representation of solutions of Tricomi problem for the degenerate
IXEA EQUALIONS + <+« ++ +++ v ve e v e tmneeeaeeanetnaneietaeeae, 478
16.3 Existence of solutions of the Tricomi problem for degenerate mixed
EQUALIOMIS + -+ v v e vt e e 486
16.4 Existence of solutions of the Tricomi problem for elliptic equations
with parabolic degeneracy -------- N e 493

Part III Boundary Value Problems
Preface of G. Akhalaia and N. Manjavidze
Introduction to the Chapters 17-19



Contents

ix
Chapter 17 The Problem of Linear Conjugation and Systems of
Singular Integral Equations:------«-«-ccooreerereiinii. .. 508
17.1 Formulation of the problem ...................................... 508
17.2 Boundary value problem of linear conjugation with continuous
CORTRCIBIIES « - -+ + v v v v o e em s v et e te et e et ae e 511
17.3 Boundary value problems with piecewise continuous coefficients - - 514
17.4 Systems of singular integral equations----«------ccoovrireranion.. 531
17.5 Differentiability of solutions and singular integral equations ---- - - 536
Chapter 18 Linear Conjugation with Displacement for Analytic
TPUTICEIOTIS -+ ++ <« = ¢ v e et e ennsaenensaeneateeamenenaaeneneannes 545
18.1 Introduction and auxiliary propositions «:«:-«-errrereriiiiiann. 545
18.2 Linear conjugation with displacement in case of continuous
COBTTICIEIIES -+« « # + v+ e v e me st e entesnet et eaeneierraernaneeaennnenns 547
18.3 Linear conjugation with displacement in case of piecewise continuous
COBTRICIEIES + + + « « + v =« v v et e e esaan et areas e aaeanaenrnaasaeraneenanas 556
18.4 Boundary value problems with displacement containing complex
conjugate values of the desired functiong -+~ -ververvieinne. 564
Chapter 19 Linear Conjugation with Displacement for Generalized
Analytic Functions and Vectors---------c-roecvverennnns 571
19.1 Definitions and NOLALIONS <+« -+« trtrrrerneurrenencrnenensarans 571
19.2 Relation between linear conjugation with displacement and
generalized analytic functiong o cocvvrrieriiiiiiiiiiiin 575
19.3 Boundary value problem of linear conjugation with displacement for
generalized analytic VECHOTS - <+« v vvvvrrevreetereeeneenneiinnas 583
19.4 The problem of linear conjugation with displacement for an elliptic
system of differential eqUALIONS: -« - -« -+ v errereeriierereiinns 589
19.5 Differential boundary value problems for generalized analytic
VECLOIS s v v v vt rreemecartes et eesiosenaanrnetoasactsoesssonaosan 591
Chapter 20 On Boundary Value Problems for Non-Linear Systems
of Partial Differential Equations in the Plane ---------- 598
0.1 TIETOAUCEION « ++ -+« + st e evrnmenseenensamaeesenneennnentoeaensanen 598
20.2 Dirichlet problem in simply connected domains:-««+--«+oevevvens 600
20.3 Dirichlet problem in multiply connected domaing:«««-«+ceereeenns 605
20.4 Riemann-Hilbert problem for simply connected domaing-«--+----- 610
20.5 Application of the Schauder principle < <+« -cereerierniiene.... 618



Part I

Value Distribution of
Complex and P-adic Functions






Chapter 1

The Second Main Theorem
on Generalized Parabolic Manifolds

by Pit-Mann Wong and Philip P. W. Wong

Introduction

The Second Main Theorem for holomorphic maps from the complex Euclidean
space into the complex projective space was first established by Ahlfors [1] in 1941
(see also Cartan [4], Weyl and Weyl in [28]). The theory was greatly extended
in 1973 by Griffiths-King [15] where the domain is allowed to be affine algebraic
varieties. Stoll [26] (see also Wong [29]) further extended the result to the case
of meromorphic maps on parabolic manifolds in 1977. Variations of these results
(mostly in the 1980 and the 1990) can be found in Chen [7, 8] (in which references
for the contribution of Nochka can be found) Lang [17], Wong [31], Wong [32],
Cherry-Lang [9], Stoll-Wong [27], Hu-Yang [16]. Most recently, there are the articles
by Li [19] and Ru [22]. Indeed the literature is so vast that it would be impossible
to give an exhaustive list. The readers are encouraged to look into the short list
here for further references.

In some of the recent works in hyperbolic geometry (see [11], [12], [3], [5],
[6], [33], [34], [35] and [36]) the projectivization of a holomorphic vector bundle,
P(E), over a complex manifold plays a very important role in establishing a certain
type of Schwarz Lemma (see [6, section 5], [33] and [35, section 9]). This means
that, under some reasonable assumptions, one should be able to establish a Second
Main Theorem (abbrev. SMT) for meromorphic maps from P(F) into a complex
projective space. However, P(E) is NOT parabolic, hence none of the known
results in the literature is applicable. The concept of parabolicity is based on
the existence of a non-negative plurisubharmonic exhaustion function 7 such that
¢ = log T satisfies the complex Monge-Amperé Equation:

(dd°¢)™ =0

on M, = M\ {r =0}, m = dimM. It is well known that the equation above is
equivalent to the equation:
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E T =T
a,b

The readers are referred to [30], [21], [18], [34] for the theory (and further references)
concerning this equation.

In this paper we introduce (see section 2) the concept of p-parabolicity. A
Kéhler manifold (M,w) is said to be p-parabolic (1 < p < m) if there exists a
non-negative plurisubharmonic exhaustion function 7 such that ¢ = log 7 satisfies

the equation:
(dd°¢)P Aw™ P =0,

where w is the Kiahler metric. Note that m-parabolicity is the classical notion of
parabolicity. In section 2 we show that if F is a holomorphic vector bundle of
rank p < m over a Stein manifold, then P(E) is p-parabolic. A brief discussion of
projectivized bundle can be found in section 2. The purpose of this article is to
extend the main results in the references (these results are special cases, p = m,
of our results) mentioned in the first paragraph of this introduction. There are
currently much activities in Nevanlinna Theory and related topics, indeed words in
the street indicate that a number of new results begin to surface by various people
just as this article is completed.

In section 1 we show that the analogue of the classical Green-Jensen Formula
and the First Main Theorem (abbrev. FMT) hold on a p-parabolic manifold M.
These strongly suggested that a Second Main Theorem (abbrev. SMT), in the spirit
of Ahlfors, should be possible. For this, it is necessary to construct the so called
associate maps of a linearly non-degenerate meromorphicmap f: M —P*. If M is
the Euclidean space these are the Wronskians of the derivatives of f. In the case of
a parabolic manifold, these are defined by Stoll (see [25], [26], [27] and [31]), where
the derivatives are defined via a “sufficiently general” global holomorphic form B of
type (m — 1,0). For example, on a Stein parabolic manifold, the existence of such
a general form is guaranteed. Unfortunately, this is no longer valid for p-parabolic
(p # m) manifolds (e.g., the fibers of a projectivized bundle is a projective space
which does not admit any non-trivial holomorphic form). For this reason, we extend
Stoll’s approach by using “sufficiently general” meromorphic global forms. This is
carried out in section 3.

The two main ingredients in the proof of the SMT are (1) the Pliicker formulas
and (2) the Ahlfors-Stoll estimate. These are carried out in sections 5 and 6. The
proof of these formulas are quite technical in higher dimensions, so we include in
section 4 a simple proof in P? (as well as some related results) as motivation. The
final step of the proof of the SMT is carried out in section 7. It is necessary to
compensate for the fact that the associate maps are defined via a meromorphic,
rather than holomorphic, form B. The idea is to multiple the form B by a holo-
morphic section p of some holomorphic line bundle £ vanishing at the singular set
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of B (we cannot do this using holomorphic function as this would mean that we
may choose B to be holomorphic in the first place). The SMT takes the following
form (see Theorem 7.1):

Neamg{(r,8) + N([p = 0};r,38) + Zmo(Aj; T, 8)

Jj=1
n(n+1)

<-4+ D)Tp(r8) + Ti(Limy ) + ——

Rp(r, s) + O(log(rG(r)T;(r))),

where N([n = Q];, s]) is the counting function,
Ti(L;r,8) = / =1 / 1(L, k) A (dd°T)P Aw™ P,

where ¢1(L, h) is the first Chern form of £ and R,,(r, s) is the p-th curvature integral
of the p-parabolic exhaustion function 7:

Ry(rs) = / e / dd°[log Ay) A (dd°T)P A w™ P

where A, is defined by:
(dd°T)P Aw™ P = Ap(V-1)"d¢ AdCT A - AT ACT

If p = 1, A; is the trace of the Levi form of T with respect to the Kéhler metric w.
In the case of parabolic manifolds, p = m = dim M, A4,, = det(r,3) and R (r,s)
is denoted by R,(r,s) in the literature. Moreover, in the case of parabolic Stein
manifolds, B is holomorphic and we may set N([u = 0],7,5) = T1(L;r,s) =0 in
the SMT above.

In the special case where E is an algebraic vector bundle over an affine algebraic
manifold, the SMT for P(E) takes a very simple form (see Corollary 7.2):

Nramg(r,s) + Zmo(Aj; r,8). <.(n+0)Ty(r,s) + 0(log (rTf('r'))).
j=1

1.1 Monge-Amperé equations and generalized
parabolic manifolds

Let M be a connected complex manifold of complex dimension m. A real-valued
function ¢ is said to satisfy the complex homogeneous Monge-Amperé equation if

(dd°¢)™ =0, (1.1)

and we say that the equation is non-degenerate at a point z if (dd°$)™ ! # 0 at
z. Here d¢ = /—1(8 — 8), hence dd® = 2/=18. For m = 1,dd° is simply the
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Laplace operator and the solutions of (1.1) are the harmonic functions. Classically,
a manifold M is said to be parabolic if there exists a plurisubharmonic exhaustion
T : M — [0,00) of class C* such that ¢ = log is plurisubharmonic satisfying
(1.1) on M, = M \ [t = 0]. Parabolic manifolds are important in Nevanlinna
theory due to the fact that a natural generalization of Nevanlinna’s Second Main
Theorem in one complex variable is, to a large extent, valid on such manifolds. An
affine algebraic manifold (that is, a submanifold of CV defined as common zeros of
polynomials) is parabolic and, on such a manifold the SMT is very much a perfect
extension of Nevanlinna’s classical result. A parabolic exhaustion on an affine
algebraic manifold may be constructed as follows (see [26] for further examples).

Example 1.1 An affine algebraic variety M of dimension m may be exhibited as
a finite branched covering map n: M — C™. For each a € C™, let

T=n""(l]z - al*) (1.2)

be the pull-back of the standard Euclidean exhaustion on C" and let ¢ = log7.
Then 7 is an exhaustion function on M such that:

(i) dd®r 2 0,

(ii) dd°T > 0 outside the ramification divisor R = [det n, = 0],

(iii) dd°¢ > 0 and (dd°¢)™ = 0 on M, = M \ {r = 0} and the equation is
non-degenerate on M, \ nt(R). )

Recent results in Nevanlinna theory and complex hyperbolic geometry indicate
that the classical theory of parabolic manifolds is not quite general enough. Indeed,
much of the recent works on the theory of holomorphic maps into affine varieties
make use of certain (projectivized) vector bundles (more generally, C*-bundles)
over these varieties. The bundle space of a projectivized vector bundle over an
affine algebraic variety is not parabolic in the sense defined above. For this reason,
we begin by generalizing the concept of parabolicity.

Definition 1.2 A Kihler manifold (X,w) of dimension m is said to be a p-
parabolic manifold, 1 < p < m, if there is a plurisubharmonic exhaustion ¢ such
that

(i) {¢ = —oo} is a closed subset of strictly lower dimension,
(ii) ¢ is smooth outside {¢ = —oo0} and
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on X, = X \ {¢ = —o0} for some integer 1 < p < m. The exhaustion ¢ is said
to be a k-parabolic exhaustion. The equation is said to be k-non-degenerate at a
point z if
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