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ABSTRACT

Data mining, also referred to as knowledge discovery, has recently emerged as an
important rescarch topic, and association rules mining is considered as one of the most
referenced sub-topics in data mining. In the past, traditional algorithms process all records in
a batch way for mining association rules. In real-world applications, records are constantly
being inserted, deleted or modified in dynamic databases. Designing an algorithm that can
efficiently maintain association rules in dynamic databases is critically important. In the first
part of this dissertation, three Pre-FUFP maintenance algorithms are thus proposed to
efficiently maintain and update the FUFP-tree structures regardless of whether records are
inserted, deleted or modified in dynamic databases. Based on two support thresholds of
pre-large concepts, it helps avoid the need to re-build the tree structure until after a number of
records have been processed. The FP-growth-like algorithm is then implemented to mine the
desired information for the updated FUFP trees.

In the association rules mining, it treats items as binary variables in databases, which
considers whether an item is bought in a record or not. Utility mining was thus proposed to
reflect any other implicit factors, such as prices or profits. In the second part of this
dissertation, a novel HUP-tree algorithm is proposed to efficiently mine the high utility
itemsets based on the downward closure property. A HUP tree is first designed to keep the
related information for later mining process. A HUP-growth mining algorithm is then
presented to efficiently mine high utility itemsets from it.

In the past, most association rules mining focused on processing binary variables in
databases. In recent years, many fuzzy data mining algorithms have been proposed for
managing quantitative data, and most of them are processed in the level-wise approaches. In
the third part of this dissertation, we attempt to extend the FP-tree algorithm for handling
quantitative data from the global values of fuzzy regions. Thus, the fuzzy FP-tree algorithm,



the compressed fuzzy frequent pattern tree (CFFP-tree) algorithm, and the upper-bound fuzzy
frequent pattern tree (UBFFP-tree) algorithm are then proposed to efficiently mine the fuzzy
frequent itemsets. The maximum cardinality is used to make the number of fuzzy regions
processed equivalent to the number of the original items for reducing the processing time.
Three mining algorithm are then proposed to mine the fuzzy frequent itemsets based on the
designed tree structures, respectively.

Experimental results showed that the performance of the proposed algorithms in three
parts of this dissertation for handling association rules mining, high utility mining and fuzzy
data mining, respectively.

Keywords: data mining, fuzzy data mining, utility mining, (ree structure, maintenance

algorithm.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Years of effort in data mining have been produced a variety of efficient techniques.
Depending on the type of databases processed, the mining approaches may be classified as
finding association rules [2, 4-7, 10-11, 46-48, 59], classification rules [29, 52], clustering
rules [34, 39]. sequential patterns [3, 50, 53], among others. Among them, association rules
mining is the most commonly seen in data mining. It consists of two main steps to derive the
association rules from the transaction databases. The first step is to discover the frequent
itemsets from databases based on the minimum support threshold; and the second one is to
create the association rules from the found frequent itemsets during the first step based on the
minimum confidence threshold. That is, mining frequent itemsets from databases is a
fundamental task of finding association rules.

Numerous methods were proposed in the past to discover frequent itemsets, such as
level-wise approaches and pattern-growth ones. In the level-wise approaches, most of which
were based on the Apriori algorithm [2, 4-5], which generated and tested candidate itemsets
level-by-level. In the pattern-growth approaches [1, 16, 19, 35, 56], most of which were
based on the Frequent-Pattern-tree (FP-tree) structure [20] for efficiently mining association
rules without generation of candidate itemsets. Both of the Apriori and the FP-tree mining
approaches, however, are processed in the batch way. Cheung er al. then proposed the
noticeable Fast UPdate (FUP) algorithm and FUP2 algorithm to maintain the discovered rules
for record insertion [12] and record deletion [13], respectively. Hong er al. then attempted to

modify the batch procedure of the FP-tree algorithm based on the FUP concept and proposed



a Fast Updated FP-tree (FUFP-tree) structure for easily updating the tree. Three maintenance
algorithms were also proposed to maintain the FUFP tree whether the records are inserted [12,
271, deleted [13, 28] or modified [13, 26] in dynamic databases.

Although the FUP and FUP2 algorithms could indeed improve mining performance for
record insertion and record deletion, the original databases still needed to be re-scanned
whenever necessary. Hong ¢f al. thus proposed three pre-large algorithms for record insertion
[24]. record deletion [21] and record modification [22], respectively, to further reduce the
need for rescanning the original databases based on two support thresholds of pre-large
algorithms. Based on the pre-large concepts, the original databases are unnecessary to rescan
until a number of records have been processed. Since rescanning the databases spent much
computation time, the maintenance cost could thus be reduced in the pre-large algorithms.

In the first part of this dissertation, a maintenance framework is proposed for effectively
updating the constructed FUFP-tree structures and then deriving the desired frequent itemsets
from it. It consisted of three Pre-FUFP maintenance algorithms for record insertion, record
deletion, and record modification in dynamic databases, respectively. The proposed three
maintenance algorithms do not require rescanning the original databases to re-construct the
FUFP tree until a number of records have been processed. The number is determined from the
two support thresholds and the size of the original databases. In the experimental results, the
proposed three Pre-FUFP maintenance algorithms ran faster than the batch FP tree and FUFP
tree but generated nearly the same number of tree nodes. That is, the proposed algorithms can
thus achieve a good trade-off between execution time and tree complexity.

In the association rules mining, it treats all items in the databases as binary variables.
That 1s, they only consider whether an item 1s bought in a record or not. In this case, frequent
itemsets just reveal the occurrence importance of the itemsets in the records, but do not
reflect any other implicit factors, such as prices or profits. Utility mining was thus proposed
to partially solve the above problem [9, 41, 55]. Liu er al. then presented the two-phase
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algorithm for fast discovering all high utility itemsets based on the downward-closure
property to generate and test candidate high utility itemsets in a level-wise way [42]. The
databases-scanning time is, however, a bottlencck of the approach. In second part of this
dissertation, a new high utility pattern tree (HUP-tree) algorithm with the aid of the HUP-tree
structure is first designed for mining high utility itemsets. An array is then attached to cach
node for keeping the quantities of its super-items in the path for later mining process. The
HUP-growth mining algorithm based on the proposed HUP-tree structure is then presented to
efficiently mine the high utility itemsets. In the experimental results, the proposed algorithm
for mining high utility itemsets can thus be efficiently than the two-phase algorithm in a
level-wise way.

In addition to binary variables in databases of association rules mining, transaction data
in real-world applications, however, usually consisted of quantitative values. In recent years,
the fuzzy set theory [32, 58] has been used more and more frequently in intelligent systems
because of its simplicity and similarity to human reasoning. Several fuzzy learning
algorithms for inducing rules from given sets of data have been designed and used to good
effect with specific domains [8, 17, 33, 49, 51, 57]. Hong er al. proposed the fuzzy mining
algorithms [23, 25] for managing quantitative data in a level-wise approach of Apriori
algorithm. Papadimitriou et af. then proposed the fuzzy frequent pattern tree (FFPT)
algorithm to find fuzzy association rules [45] in the pattern-growth approach. In the third part
of this dissertation, we attempt to extend the FP-tree mining process for handling quantitative
data from the global values of fuzzy regions. A fuzzy data mining framework is proposed to
efficiently mine the fuzzy frequent itemsets from quantitative databases. It consists of three
fuzzy data mining algorithms called fuzzy FP-tree algorithm, the compressed fuzzy frequent
pattern tree (CFFP-tree) algorithm, and the upper-bound fuzzy frequent pattern tree
(UBFFP-tree) algorithm for constructing the tree structures and mining the fuzzy frequent

itemsets from it, respectively. Experimental results also show that the performance of the
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