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Preface

The concept of generalized inverses was first introduced by 1. Fred-
holm®®! in 1903, where a generalized inverse of an integral operator was
given and was called “pseudoinverse”. Generalized inverses of differential op-
erators were implied in D. Hilbert’ s!”® discussion of generalized Green’ s
functions in 1904. See W. Reid’s!!3!! paper in 1931 for a history of gener-
alized inverses of differential operators.

The generalized inverse of matrices was first introduced by E. H.
Moore!31 in 1920, who defined a unique generalized inverse by means of
projectors of matrices. Little was done in the next 30 years until mid-1950s
when discoveries of the least-squares properties of certain generalized invers-
es and the relationship of generalized inverses to solutions of linear systems
brought new interests in the subject. In particular, R. Penrose!!*®! showed
in 1955 that the Moore’s inverse is the unique matrix satisfying four matrix
equations. This important discovery revived the study of gene-ralized in-
verses. In honor of Moore and Penrose’s contribution, this unique general-
ized inverse is called the Moore-Penrose inverse.

The theory, applications and computational methods of generalized in-
verses have been developing rapidly during the last 50 years. One milestone
is the publication of several monographs ([7],[13],[65]and[129]) on the
subject in 1970s, particularly, the excellent volume by A. Ben-Israel and T.
N.E Greville!”! which has made a long lasting impact on the subject; the
other milestone is the publications of two volumes of proceedings. The first
is the volume of proceedings!!!*!of the Advanced Seminar on Generalized In-
verses and Applications held at the University of Wisconsin-Madison in 1973
edited by M. Z. Nashed. It is an excellent and extensive survey book. It
contains 14 survey papers on the theory, computations and applications of
generalized inverses and an exhaustive bibliography that includes all related
references up to 1975. The other is the volume of proceedings!!!! of the
AMS Regional Conference held in Columbia, South Carolina in 1976 edited
by S.L. Campbell. It is a new survey book containing 12 papers on the lat-
est applications of generalized inverses. The volume describes changes in re-
search directions and types of generalized inverses since mid-1970s. Prior to
this period, due to the applications in statistics, research often centered on
generalized inverses for solving linear systems and generalized inverses with
least-squares properties. Recent studies focus on such topics as: infinite
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dimensional theory, numerical computation, matrices of special types
(Boolean, integral), matrices over algebraic structures other than real or
complex fields, systems theory and non-equation solving generalized invers-
es.

[ have been conducting teaching and research in generalized inverses of
matrices since 1976. I gave a course “Generalized Inverses of Matrices” and
held many seminars for graduate students majoring in Computational Math-
ematics in our department. Since 1979, my colleagues and I with graduate
students have obtained a number of results on generalized inverses in the ar-
eas of perturbation theory, condition numbers, recursive algorithms, finite
algorithms, imbedding algorithms, parallel algorithms, generalized inverses
of rank-r modified matrices and Hessenberg matrices, extensions of the
Cramer rules and the representation and approximation of generalized in-
verses of linear operators. Dozens of papers are published in refereed journals
in China and other countries. They draw attentions from researchers around
world. I have received letters from more than ten universities in eight coun-
tries, U.S.A., Germany, Sweden, etc. requesting papers or seeking aca-
demic contacts. Colleagues in China show strong interests and support in
our work, and request systematic presentation of our work. With the sup-
port of the Academia Sinica Publishing Foundation and the National Natural
Science Foundation of China, Science Press published my book “Generalized
Inverses of Matrices and Operators”!'®! in Chinese in 1994. That book is
noticed and welcomed by researchers and colleagues in China. It has been
adopted by several universities as textbook or reference book for graduate

students. The book was reprinted in 1998.

In order to improve graduate teaching and international academic ex-
change, I was encouraged to write this English version based on the Chinese
version. This English version is not a direct translation of the Chinese ver-
sion. In addition to the contents in the Chinese version, this book includes
the contents from more than 100 papers since 1994. The final product is an
entirely new book, while the spirit of the Chinese version still lives. For ex-
ample, Sections 2, 3 and 5 of Chapter 3, Section 1 of Chapter 6, Sections 4
and 5 of Chapter 7, Sections 1, 4 and 5 of Chapter 8, Chapters 4, 10 and
11 are all new.

Dr. Wei Yimin of Fudan University in China and Dr. Qiao Sanzheng
of McMaster University in Canada were two of my former excellent stu-
dents. They have made many achievements in the area of generalized invers-
es and are recognized internationally. I would not possibly finish this book
without their collaborations.
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We would like to thank Professor A. Ben-Israel, Dr. Miao Jianming of
Rutgers University, and Professors R. E. Hartwig, S.L. Campbell and C.
D. Meyer, Jr. of North Carolina State University, and Professor C. W.
Groetsch of University of Cincinnati. The texts[7], [13] and [65] un-
doubtedly have had an influence on this book. We also thank Professor Jiang
Erxiong of Shanghai University, Professor Cao Zhihao of Fudan Universi-
ty, Professor Wei Musheng and Chen Guoliang of East-China Normal Uni-
versity and Professor Chen Yonglin of Nanjing Normal University for their
help and advice in the subject for many years, and my doctoral student Yu
Yaoming for typing this book.

I appreciate any comments and corrections from the readers.
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lishing Foundation of Shanghai Education Committee and Shanghai Normal
University.
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Chapter 1
Equation Solving Generalized Inverses

1.1 The Moore-Penrose inverse

Let € (R) be the field of complex (real) numbers, €*(R") the vector
space of n-tuples of complex (real) numbers over € (R), C™*™ (R™*™) the
class of m X n complex (real) matrices, € *" (R**™) the class of m x n
complex (real) matrices of rank r, and R(4) = {y €C™ : y = Az, z € C"}
the range of A € C™*™. It is well known that every nonsingular matrix A €
€™ has a unique matrix X € C2*" satisfying

AX =1, XA=1I, (1.1.1)

where I is the identity matrix. This X is called the inverse of A, and is
denoted by X = A~
The nonsingular system of linear equations

Az =b (AcC. ", bel") (1.1.2)
has a unique solution for z, given by
xz=A"1b.

In the general case, A may be singular or rectangular, there may exist no
solution or multiple solutions. The consistent system of linear equations

Az =b (A €C™ ™, m < n, be R(4)) (1.1.3)
has many solutions. The inconsistent system of linear equations
Az =b (A€CT™", b¢ R(4)) (1.1.4)

has no solution. However, it has a least-squares solution.

Can we find a suitable matrix X, such that & = Xb is some kind of
solution of the equation Ax = b? This X is called the equation solving
generalized inverse. A generalized inverse reduces to the usual inverse when
A is nonsingular. The Moore-Penrose inverse and {4, j, k} inverses which
will be discussed in this chapter are the classes of generalized inverses.
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1.1.1 The definition and the basic properties of At

Let A € €™ and A* denote the conjugate transpose of A. Then A*A
is the nonsingular matrix of order n, and the least-squares solution z of the
inconsistent system of linear equations (1.1.4) can be solved by the following
normal equations

A* Az = A*b, (1.1.5)
we have x=(A*A)"1A*b. Let
X =(A*A) A", (1.1.6)

It can be verified that X is the unique matrix satisfying the following four
equations (usually called the Penrose conditions)
(1) AXA = A4,
(2) XAX = X,
(3) (AX)* = AX,
(4) (X4)* = XA.
This X is called the Moore-Penrose generalized inverse of A, and is denoted
by X=A?'. Thus the least-squares solution of (1.1.5) is ¢ = A'b.
Especially, if m = n = rank(A), we have

Al =(A*A)7TA" = AN (AN TTA = AL

This shows that Moore-Penrose inverse Af reduces to usual inverse A~}
when A is nonsingular.

For general m X n matrices, we have

Definition 1.1.1 Let A € €™*". Then the matriz X € C™*™ satis-
fying the Penrose conditions (1) ~ (4) is called the Moore-Penrose inverse
of A (abbreviated as the M-P inverse), and is denoted by X = Af.

In the following, we will show the existence and uniqueness of the matrix
X € €**™ in Definition 1.1.1.

Theorem 1.1.1 The generalized inverse X satisfying the Penrose
conditions (1) ~ (4) is existent and unique.

Proof Let A eC"™". Then A can be decomposed as A = Q*RP (see
for example [141]), where Q and P are the unitary matrices of orders m and
n respectively and

_ Rll 0 mXn
R-(O O)EC ,

where R, is the nonsingular upper triangular matrix of order r. Denote

RT — ( gi—ll g ) ecnxm,
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then X = P*R'(Q satisfies the Penrose conditions (1) ~ (4). In fact,
AXA = Q*RPP*RIQQ*RP = Q*RP = A,
XAX = P*R'QQ*RPP*RTQ = P*R'Q = X,

(4X)" = (Q"RPP'RIQ)" = (@" ( P ) Q)" = AX,

I 0

(xar = (PRQeRPy = (7" (| )

)Py =xa

Therefore, for any A € €7*" X = A! always exists. The uniqueness of X
is proved as follows.
If X, and X3 both satisfy the Penrose conditions (1) ~ (4), then

X1 = X1AX; = X1 AX2AX,
= X1(AX2)* (AX1)* = X1(AX14X,)"
= X1(AX2)* = X14X>
= X1AX3AX, = (X1 4)"(X24)* X
= (X2AX1A)* X2 = (X24)* Xa
= X2AX; = Xo.

The next theorem lists some of properties of the M-P inverse.
Theorem 1.1.2 Let A e C™*". Then
(1) (D = 4

> =

» A#O,
A=0

o

(2) VAT = ATAY where A €@, AT = {

(3) (47! = (A1);

(4) (AA")T = (A7) Al; (4*A)t = AT(a%)Y;

(5) AT = (A*A)TA* = A*(AAM;

(6) A* = A*AAT = ATAA*;

(7) If rank(A) = n,then AtA =1I,;

if rank(A) = m,then AAt = I,,;

(8)(UAV)t = V*AtU*, where U and V are unitary matrices.

The above properties can be checked by using Definition 1.1.1. The
proof is left as an exercise.

1.1.2 The range and null space of a matrix

Definition 1.1.2 Let A e C™*". We denote by

R(A) {y eC™ : y= Az, x €C"}, the range of A;
N(A) {x €eC” : Az =0}, the null space of A.

We can prove

R(4)* = N(4%),
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where R(A)1 is the orthogonal complementary subspace of R(A), i.e., the
set of all vectors in €™ which are orthogonal to every vector in R(A4). Every
x € C" can be expressed uniquely as a sum

x=y+z y€ R(A),z € R(A)™ .

Theorem 1.1.3 (The basic properties of the range and null space)
(1) R(A) = R(AAT) = R(AA*);

(2) R(AT) = R(A*) = R(A'A) = R(A" A);

(8) R(I — ATA) = N(ATA) = N(A) = R(A*)*;

(4) R(I — AAt) = N(AA") = N(A") = N(4*) = R(A)*;

(5) R(AB) = R(A) <« rank(AB) = rank(A);

(6) N(AB) = N(B) < rank(AB) = rank(B).

The proof is left as an exercise.
The following properties of rank are used in this book.

Lemmal.1.1 LetA e C™*" Es = I,,—AA', andF4 = I,— At A.Then
(1) rank(A) = rank(A') = rank(A'A) = rank(A4A");

(2) rank(A) = m — rank(E,4), rank(A) = n — rank(F4);

(3) rank(AA*) = rank(A) = rank(A*A).

The proof is left as an exercise.

1.1.3 Full-rank factorization

A pon-null matrix that is of neither full column rank nor full row rank
can be expressed as the product of a matrix of full column rank and a
matrix of full row rank. We call a factorization with the above property a
full-rank factorization of a non-null matrix. This factorization turns out to
be a powerful tool in the study of the generalized inverses.

Theorem 1.1.4 Let A € € ", r > 0. Then there exist matrices
F e and G € CL*™ such that

A=FG. (1.1.7)

Proof Let F be any matrix whose columns are a basis for R(A).
Then F = (£, fy,--- , f,) €C7*". Let A = (a;,as2, -+ ,a,). Then every
column a; of A is uniquely representable as a linear combination of the
columns of F',

a; =guf,+gufo+---+g:if, (E=1,2,---,n). (1.1.8)
Hence
A:(aly az, ‘--, an)
g1 G122 - Gin
g21 g22 - G2n
=(f1a .f27 Tt fr) . . .
gr1  Ggr2 *r Grn

= FG.
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The matrix G € €"*" is uniquely determined by the above equality. It is
obvious, rank(G) < r. Since

rank(G) > rank(FG) =r,

thus rank(G) = r. O
Let A = FG be a full-rank factorization of A and C' € C.*". Then

A= (FC)(C—IG) = F1G1

is also a full-rank factorization of A. Thus the full-rank factorization of A
is not unique. A practical algorithm of a full-rank factorization is given
in Chapter 4. MacDuffe[97]pointed out that a full-rank factorization of A
leads to an explicit formula for its M-P inverse Af.

Theorem 1.1.5 Let A e CT*", r > 0, and its full-rank factorization
A= FG. Then

Al = G*(F*AG*) 'F* = G*(GG*) Y (F*F)"'F*. (1.1.9)
Proof First we show that F* AG* is nonsingular. By A = FG,
F*AG* = (F*F)(GG*),
and F*F and GG* are r x r matrices. Also by Lemma 1.1.1, both are
of rank r. Thus F*AG* is the product of two nonsingular matrices, and
therefore F* AG™ is nonsingular and
(F*AG*)™! = (GG")"Y(F*F)~L.
Denoting by X the right member of (1.1.9), we have
X =G*(GG*) Y F*F)~'F*,

and it is easy to verify that this expression for X satisfies the Penrose con-
ditions (1) ~ (4). By the uniqueness of M-P inverse A', (1.1.9) is therefore
established. O

1.1.4 Moore-Penrose inverse and the minimum-norm least-
squares solution of an inconsistent system of linear
equations

Let @ = (%1, %2, ---, zp)* € CP. Then

zllz = <Z lmilz) = (z*z)% (1.1.10)

i=1
is the 2-norm of z, for convenience, set |||z = ||z]|.
Let u, v € C?, and (u, v)= 0, i. e., u and v are orthogonal. Then

lu+ol? = (ut+v,ut+v) = (u,u)+ (v, ) + (w,v) + (v,v) = [Ju|? +|jv]|2
(1.1.11)
This is the Pythagorean theorem.
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Now consider the problem of finding a solution & to an inconsistent
system of linear equations

Az =b (A €T™ ", b ¢ R(A)). (1.1.4)

We look for x that makes ||Ax — b| as small as possible.

Definition 1.1.3 Let A €C™*" and b € C™. Then a vector u € C"
is called a least-squares solution to Ax = b if ||[Au — b| < ||[Av — b|| for
all ve C™.

Definition 1.1.4 Let A € C™*" and b €C™. Then a vector u € C*
is called a minimum-norm least-squares solution to Ax = b if u is a least-
squares solution to Ax =b and || u || < || w | for any other least-squares
solution w.

If b € R(A), the system of linear equations Ax = b is consistent, then
notations of solution and the least-squares solution of Ax = b obviously
coincide.

The next theorem shows the relation between the minimum-norm least-
squares solution (1.1.4) and M-P inverse Af.

Theorem 1.1.6 Let A € C™*" andb € C™. Then Atb is the minimum-
norm least-squares solution of (1.1.4).

Proof Let b= b, + by, where

b1 = AA'b € R(A), by = (I — AAYb e R(A)L.
Then Az — b; € R(A) and
Az - b* = || Az — b1 + (—by)||” = || Az — by || + ||b2 ||

Thus & will be a least-squares solution if and only if = is a solution of
the consistent system Az = AA'b. It is obvious that A'b is a particular
solution. From Theorem 1.1.3,

N(A)={(I- A'A)h : heqm},

thus the general solution of the consistent system Az = AA'b is
x=Ab+ (I - A'A)h, herm.

Because

l4tB]2 < | AtB)2 + ||(I — ATA)A|?
= ||Ato+ (I — ATA)R|2, (I— AtA)R 0,

x = A'b is the minimum-norm least-squares solution of (1.1.4). O

In some applications, the minimality of a least-squares solution is im-
portant, in others it is not important. If the minimality is not important,
then the next theorem can be very useful.

Theorem 1.1.7 Let A € €™" and b € T™. Then the following
statements are equivalent:

(1) u is a least-squares solution of Ax = b;

(2) u is a solution of Az = AA'b;

(3) u is a solution of A*Ax = A*b;

(4) u is of the form Atb+ h, where h € N(A).
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Proof We know from the proof of Theorem 1.1.6 that (1), (2) and (4)
are equivalent. If (2) holds, then multiplying Au = AA*b on the left by A*
gives (3). On the other hand, multiplying A* Au = A*b on the left by A*f
gives

Au = AA'D,
u=AY(AA'b) + h = ATb + h, h € N(A),

thus (4) holds. 0

Notice that the equations in statement (3) of Theorem 1.1.7 do not

involve A! and are consistent. They are called the normal equations and
play an important role in certain areas of statistics.

Exercises 1.1

1. Prove Theorem 1.1.2.

2. Prove that R(A) = N(4™)*.

3. Prove that rank(AA*) = rank(A4) = rank(A*A).

4. Prove that R(AA*) = R(A), N(A*A) = N(A).

5. Prove that R(AB) = R(A) & rank(AB) = rank(A);
N(AB) = N(B) < rank(AB) = rank(B).

6. Prove Theorem 1.1.3.

7. Show that if A = FG is a full-rank factorization, then
At = GTFt.
8. If a and b are column vectors, then
(1) at = (a*a)tar;
(2) (ab*)' = (a*a)! (b*b) ba*.
9. Show that H' = H if and only if H* = H and H? = H.
10. If U and V are unitary matrices, show that
(UAV)t = v*Aty*
for any matrix A for which the product U AV is defined.
11. Show that if A € C™*" and rank(A) = 1, then Af = —l—A*, where a =
o

tr(4*4) = ) lay/*.

i,j
12. Show that if X e C™*",
1
1 .
zo=| . [ €C™ Xi=(xo:X) ™D
1

beC™, G eC,by = < bﬁo ) €C™*!, then b; is a least-squares solution of

. . 1
X1by = y if and only if Gy = Efcﬁ(y — Xb) and b is a least-squares
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1
(I - —l—zoa:a) Xb= (I - —wosca) Y.
m m

1.2 {4, j, k}inverses

solution of

We discussed the relations between the minimum-norm least-squares
solution of an inconsistent system of linear equations (1.1.4) and the M-P
inverse in Section 1.1. The relations between the solutions of other linear
equations and the matrix equation, and the {i,j, k} inverses are given in
this section.

1.2.1 {1}inverse and the solution of a consistent system of
linear equations

If A € €™, then one of the characteristics of A1 is that for every b,
A~1b is the solution of Az = b. One might ask for A € €™*", what are
the characteristics of a matrix X € €™*™ such that Xb is a solution of the
consistent system of linear equations (1.1.3)7

If AXb = b is true for every be R(A), it is clear that

AXA = A,

i.e., the Penrose condition (1) holds. Conversely, suppose X satisfies AX A =
A. For every be R(A) there exists an &y, € €™ such that Azy, = b. There-
fore AXb= AX Axy, = Ay, = b for every b € R(A). The next theorem is
a formal statement of the above observations.

Theorem 1.2.1 For Ac €C™*", X € €™ has the property that Xb
is a solution of Az = b for every b € C™ for which Ax = b is consistent if
and only if

AXA = A. (1.2.1)

Definition 1.2.1 A matric X satisfying the Penrose condition (1)
AXA = A is called the equation solving generalized inverse for AXA = A
or {1} inverse of A, and is denoted by X = AY) or X € A{1}, where A{1}
denotes the set of all {1} inverses of A.

1.2.2 {1, 4} inverse and the minimum-norm solution of a
consistent system of linear equations

Suppose we seek X € C™*™ such that, in addition to being an equation
solving inverse for consistent linear equations (1.1.3), we also require that
for each b € R(A), || Xb|| < [|z|| for all z # Xband z € {x : Az = b}. That
is, for each b € R(A) we want Xb to be the solution of minimal-norm.

If b € R(A), AA"9b = b and the solutions and the least-squares solu-
tions of the consistent system of linear equations (1.1.3) coincide. Therefore



