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PREFACE

My purpose in writing this book was to provide a clear, accessible treatment of discrete
mathematics for students majoring or minoring in computer science, mathematics, math-
ematics education, and engineering. The goal of the book is to lay the mathematical
foundation for computer science courses such as data structures, algorithms, relational
database theory, automata theory and formal languages, compiler design, and cryptog-
raphy, and for mathematics courses such as linear and abstract algebra, combinatorics,
probability, logic and set theory, and number theory. By combining discussion of theory
and practice, I have tried to show that mathematics has engaging and important applica-
tions as well as being interesting and beautiful in its own right.

A good background in algebra is the only prerequisite; the course may be taken by
students either before or after a course in calculus. Previous editions of the book have
been used successfully by students at hundreds of institutions in North and South America,
Europe, the Middle East, Asia, and Australia.

Recent curricular recommendations from the Institute for Electrical and Electronic
Engineers Computer Society (IEEE-CS) and the Association for Computing Machinery
(ACM) include discrete mathematics as the largest portion of “core knowledge” for com-
puter science students and state that students should take at least a one-semester course in
the subject as part of their first-year studies, with a two-semester course preferred when
possible. This book includes all the topics recommended by those organizations and can
be used effectively for either a one-semester or a two-semester course.

At one time, most of the topics in discrete mathematics were taught only to upper-level
undergraduates. Discovering how to present these topics in ways that can be understood
by first- and second-year students was the major and most interesting challenge of writing
this book. The presentation was developed over a long period of experimentation during
which my students were in many ways my teachers. Their questions, comments, and
written work showed me what concepts and techniques caused them difficulty, and their
reaction to my exposition showed me what worked to build their understanding and to
encourage their interest. Many of the changes in this edition have resulted from continuing
interaction with students.

Themes of a Discrete Mathematics Course

Discrete mathematics describes processes that consist of a sequence of individual steps.
This contrasts with calculus, which describes processes that change in a continuous fash-
ion. Whereas the ideas of calculus were fundamental to the science and technology of the
industrial revolution, the ideas of discrete mathematics underlie the science and technology
of the computer age. The main themes of a first course in discrete mathematics are logic
and proof, induction and recursion, combinatorics and discrete probability, algorithms and
their analysis, discrete structures, and applications and modeling.

Logic and Proof Probably the most important goal of a first course in discrete mathe-
matics is to help students develop the ability to think abstractly. This means learning to
use logically valid forms of argument and avoid common logical errors, appreciating what
it means to reason from definitions, knowing how to use both direct and indirect argument
to derive new results from those already known to be true, and being able to work with
symbolic representations as if they were concrete objects.

Xi
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Induction and Recursion An exciting development of recent years has been the in-
creased appreciation for the power and beauty of “recursive thinking.” To think recur-
sively means to address a problem by assuming that similar problems of a smaller nature
have already been solved and figuring out how to put those solutions together to solve
the larger problem. Such thinking is widely used in the analysis of algorithms, where
recurrence relations that result from recursive thinking often give rise to formulas that are
verified by mathematical induction.

Combinatorics and Discrete Probability Combinatorics is the mathematics of count-
ing and arranging objects, and probability is the study of laws concerning the measurement
of random or chance events. Discrete probability focuses on situations involving discrete
sets of objects, such as finding the likelihood of obtaining a certain number of heads
when an unbiased coin is tossed a certain number of times. Skill in using combina-
torics and probability is needed in almost every discipline where mathematics is applied,
from economics to biology, to computer science, to chemistry and physics, to business
management.

Algorithms and Their Analysis The word algorithm was largely unknown in the mid-
dle of the twentieth century, yet now it is one of the first words encountered in the study of
computer science. To solve a problem on a computer, it is necessary to find an algorithm or
step-by-step sequence of instructions for the computer to follow. Designing an algorithm
requires an understanding of the mathematics underlying the problem to be solved. Deter-
mining whether or not an algorithm is correct requires a sophisticated use of mathematical
induction. Calculating the amount of time or memory space the algorithm will need in
order to compare it to other algorithms that produce the same output requires knowledge
of combinatorics, recurrence relations, functions, and O-, -, and ®-notations.

Discrete Structures Discrete mathematical structures are the abstract structures that
describe, categorize, and reveal the underlying relationships among discrete mathematical
objects. Those studied in this book are the sets of integers and rational numbers, general
sets, Boolean algebras, functions, relations, graphs and trees, formal languages and regular
expressions, and finite-state automata.

Applications and Modeling Mathematical topics are best understood when they are
seen in a variety of contexts and used to solve problems in a broad range of applied
situations. One of the profound lessons of mathematics is that the same mathematical
model can be used to solve problems in situations that appear superficially to be totally
dissimilar. A goal of this book is to show students the extraordinary practical utility of
some very abstract mathematical ideas.

Special Features of This Book

Mathematical Reasoning The feature that most distinguishes this book from other
discrete mathematics texts is that it teaches—explicitly but in a way that is accessible to
first- and second-year college and university students—the unspoken logic and reasoning
that underlie mathematical thought. For many years I taught an intensively interactive
transition-to-abstract-mathematics course to mathematics and computer science majors.
This experience showed me that while it is possible to teach the majority of students to
understand and construct straightforward mathematical arguments, the obstacles to doing
so cannot be passed over lightly. To be successful, a text for such a course must address
students’ difficulties with logic and language directly and at some length. It must also
include enough concrete examples and exercises to enable students to develop the mental
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models needed to conceptualize more abstract problems. The treatment of logic and proof
in this book blends common sense and rigor in a way that explains the essentials, yet
avoids overloading students with formal detail.

Spiral Approach to Concept Development A number of concepts in this book appear
in increasingly more sophisticated forms in successive chapters to help students develop
the ability to deal effectively with increasing levels of abstraction. For example, by the
time students encounter the relatively advanced mathematics of Fermat’s little theorem
and the Chinese remainder theorem in the Section 10.4, they have been introduced to
the logic of mathematical discourse in Chapters 1 and 2, learned the basic methods of
proof and the concepts of mod and div in Chapter 3, studied partitions of the integers in
Chapter 5, considered mod and div as functions in Chapter 7, and become familiar with
equivalence relations in Sections 10.2 and 10.3. This approach builds in useful review
and develops mathematical maturity in natural stages.

Support for the Student ~Students at colleges and universities inevitably have to learn a
great deal on their own. Though it is often frustrating, learning to learn through self-study
is a crucial step toward eventual success in a professional career. This book has a number
of features to facilitate students’ transition to independent learning.

Worked Examples

The book contains over 500 worked examples, which are written using a problem-
solution format and are keyed in type and in difficulty to the exercises. Many solutions
for the proof problems are developed in two stages: first a discussion of how one
might come to think of the proof or disproof and then a summary of the solution,
which is enclosed in a box. This format allows students to read the problem and skip
immediately to the summary, if they wish, only going back to the discussion if they
have trouble understanding the summary. The format also saves time for students who
are rereading the text in preparation for an examination.

Exercises

The book contains almost 2,500 exercises. The sets at the end of each section have
been designed so that students with widely varying backgrounds and ability levels will
find some exercises they can be sure to do successfully and also some exercises that
will challenge them.

Solutions for Exercises

To provide adequate feedback for students between class sessions, Appendix B con-
tains a large number of complete solutions to exercises. Students are strongly urged
not to consult solutions until they have tried their best to answer the questions on
their own. Once they have done so, however, comparing their answers with those
given can lead to significantly improved understanding. In addition, many problems,
including some of the most challenging, have partial solutions or hints so that students
can determine whether they are on the right track and make adjustments if necessary.
There are also plenty of exercises without solutions to help students learn to grapple
with mathematical problems in a realistic environment.

Figures and Tables
Figures and tables are included in every case where it seemed that doing so would help
readers to a better understanding. In most, a second color is used to add meaning.

Reference Features

Many students have written me to say that the book helped them succeed in their
advanced courses. One even wrote that he had used the first edition so extensively
that it had fallen apart and he actually went out and bought a copy of the second edition,
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which he was continuing to use in a master’s program. My rationale for screening
statements of definitions and theorems, for putting titles on exercises, and for giving
the meaning of symbols and a list of reference formulas in the endpapers is to make
it easier for students to use this book for review in a current course and as a reference
in later ones.

Support for the Instructor 1 have received a great deal of valuable feedback from
instructors who have used previous editions of this book. Many aspects of the book have
been improved through their suggestions.

Exercises

The large variety of exercises at all levels of difficulty allows instructors great freedom
to tailor a course to the abilities of their students. Exercises with solutions in the back of
the book have numbers in blue and those whose solutions are given in a separate Student
Solutions Manual/Study Guide have numbers that are a multiple of three. There are
exercises of every type that are represented in this book which have no answer in either
location to enable instructors to assign whatever mixture they prefer of exercises with
and without answers. The ample number of exercises of all kinds gives instructors a
significant choice of problems to use for review assignments and exams. Instructors are
invited to use the many exercises stated as questions rather than in “prove that” form to
stimulate class discussion on the role of proof and counterexample in problem solving.

Flexible Sections

Most sections are divided into subsections so that an instructor who is pressed for time
can choose to cover certain subsections only and either omit the rest or leave them for
the students to study on their own. The division into subsections also makes it easier
for instructors to break up sections if they wish to spend more then one day on them.

Presentation of Proof Methods

It is inevitable that the proofs and disproofs in this book will seem easy to instructors.
Many students, however, find them difficult. In showing students how to discover and
construct proof and disproofs, I have tried to describe the kinds of approaches that
mathematicians use when confronting challenging problems in their own research.

Instructor’s Manual

An instructor’s manual is available to anyone teaching a course from this book. It
contains suggestions about how to approach the material of each chapter, solutions
for all exercises not fully solved in Appendix B, transparency masters, review sheets,
ideas for projects and writing assignments, and additional exercises.

Highlights of the Third Edition

The changes that have been made for this edition are based on suggestions from colleagues
and other long-time users of the first and second editions, on continuing interactions with
my students, and on developments within the evolving fields of computer science and
mathematics.

Improved Pedagogy
* The number of exercises has been increased to almost 2,500. Approximately 980
new exercises have been added.

* Exercises have been added for topics where students seemed to need additional
practice, and they have been modified, as needed, to address student difﬁcultips.

* Additional full answers have been incorporated into Appendix B to give students
more help for difficult topics.
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e The exposition has been reexamined throughout and revised where needed.

 Careful work has been done to improve format and presentation.

» Discussion of historical background and recent results has been expanded and the
number of photographs of mathematicians and computer scientists whose contribu-
tions are discussed in the book has been increased.

Logic

* The treatment of quantification has been significantly expanded, with a new section
entirely devoted to multiple quantifiers.

 Exercises have been added using Tarski’s World, an excellent pedagogical tool
developed by Jon Barwise and John Etchemendy at Stanford University.

« Applications related to Internet searching are now included.
e Terms for various forms of argument have been simplified.

Introduction to Proof

e The directions for writing proofs have been expanded.

¢ The descriptions of methods of proof have been made clearer.

« Exercises have been revised and/or relocated to promote the development of student
understanding.

Induction and Recursion

 The format for outlining proofs by mathematical induction has been improved.

« The subsections in the section on sequences have been reorganized.

« The sets of exercises for the sections on strong mathematical induction and the well-
ordering principle and on recursive definitions have been significantly expanded.

Number Theory

* A subsection on open problems in number theory has been incorporated, and the
discussion of recent mathematical discoveries in number theory has been expanded.

A new section on modular arithmetic and cryptography has been added. Itincludes a
discussion of RSA cryptography, Fermat’s little theorem, and the Chinese remainder
theorem.

* The discussion of testing for primality has been moved to later in Chapter 3 to make
clear its dependence on indirect argument.

Set Theory

« The properties of the empty set are now introduced in the first section of Chapter 5.
 The second section of Chapter 5 is now entirely devoted to element proofs.

« Algebraic proofs of set properties and the use of counterexamples to disprove set
properties have been moved to the third section of Chapter 5.

* The treatment of Boolean algebras has been expanded, and the relationship among
logical equivalences, set properties, and Boolean algebras has been highlighted.
Combinatorics and Discrete Probability

o Exercises for the section on the binomial theorem has been significantly expanded.

« Two new sections have been added on probability, including expected value, con-
ditional probability and independence, and Bayes’ theorem.

« Combinatorial aspects of Internet protocol (IP) addresses are explained.
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Functions

* Exercises about one-to-one and onto functions have been refined and improved.

* The set of exercises on cardinality with applications to computability has been
significantly expanded.

Efficiency of Algorithms

* Sections 9.2 and 9.4 have been reworked to add ®- and Q-notations.

* Sections 9.3 and 9.5 have been revised correspondingly, with a clearer explanation
of the meaning of order for an algorithm.

* The treatment of insertion sort and selection sort has been improved and expanded.
Regular Expressions and Finite-State Automata

* The previous disparate sections on formal languages and finite-state automata have
been reassembled into a chapter of their own.

* Anew section on regular expressions has been added, as well as discussion of the
relationship between regular expressions and finite-state automata.

Website

A website has been developed for this book that contains information and materials for
both students and instructors. It includes

* descriptions and links to many sites on the Internet with accessible information about
discrete mathematical topics,

* links to applets that illustrate or provide practice in the concepts of discrete mathe-
matics,

* additional examples and exercises with solutions,
* review guides for the chapters of the book.
A special section for instructors contains

* transparency masters and PowerPoint slides,
* additional exercises for quizzes and exams.

Student Solutions Manual/Study Guide

In writing this book, I strove to give sufficient help to students through the exposition in
the text, the worked examples, and the exercise solutions, so that the book itself would
provide all that a student would need to successfully master the material of the course. |
believe that students who finish the study of this book with the ability to solve, on their
own, all the exercises with full solutions in Appendix B will have developed an excellent
command of the subject. Nonetheless, I have become aware that some students want
the opportunity to obtain additional helpful materials. In response, I have developed
a Student Solutions Manual/Study Guide, available separately from this book, which
contains complete solutions to every exercise that is not completely answered in Appendix
B and whose number is divisible by 3. The guide also includes alternative explanations
for some of the concepts, and review questions for each chapter.



Organization

This book may be used effectively for a one- or two-semester course. Each chapter
contains core sections, sections covering optional mathematical material, and sections
covering optional applications. Instructors have the flexibility to choose whatever mixture
will best serve the needs of their students. The following table shows a division of the
sections into categories.
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Sections Containing Optional

Sections Containing Optional

Chapter Core Sections Mathematical Material Computer Science Applications
1 1.1-1.3 14,15
2 2.1-2.4 22,23 23
3 3.1-3.4,3.6 35,37 3.8
4 4.1-4.2 4344 4.5
5 5.1 5.2-5.4 54
6 6.1-6.4 6.5-6.9 6.3
7 7.1-7.2 7.3-7.5 T4, 7.2, 7.5
8 8.1,82 8.3,84 8.4
9 9.1,9.2 9.4 9.3,95
10 10.1-10.3 104, 10.5 104, 10.5
11 11.1, 11.5 11.2,11.3,11.4 11.1,11.2,11.5, 11.6
12 12.1,12.2 12.3 12.1-12.3

The following tree diagram shows, approximately, how the chapters of this book de-

pend on each other. Chapters on different branches of the tree are sufficiently independent
that instructors need to make at most minor adjustments if they skip chapters but follow
paths along branches of the tree.

1
I
2
|
3
4 5
8 11 6 7 10
12f 9

*Instructors who wish to define a function as a binary relation can cover Section 10.1 before Section 7.1.
tSection 10.3 is needed for Section 12.3 but not for Sections 12.1 and 12.2.
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