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Preface*

Algebraic topology, which went through a period of intense development from
the forties to the sixties of the last century, has now reached a comparatively stable
state. A body of concepts and facts of general mathematical interest has been
clearly demarcated, and at the same time the area of applications of topology has
been significantly widened to include theoretical physics and a number of applied
disciplines, as well as geometry and analysis.

The subject matter of the two parts of this volume can be characterized as
“elementary topology”. This term has a quite precise meaning and denotes those
parts of topology in which only comparatively simple algebra is used. The most
important topics in this volume are: homotopy groups, bundles, cellular spaces,
homology, Poincare duality, characteristic classes, and Steenrod squares. In most
cases proofs are omitted, but they are not difficult as a rule, and the reader can
reconstruct them if desired, obtaining all the necessary ideas from the text. Thus
the book may be regarded as the synopsis of a textbook on topology.

The textbook itself has been written only in part: we have in mind Beginner’s
course in topology: geometric chapters by D.B. Fuks and V.A. Rokhlin. In writing
the present work we have used not only this book, but also the numerous drafts of
its second part, on homology, work on which was broken off on the death of V.A.
Rokhlin in December 1984.

It was originally intended that V.A. Rokhlin would be one of the authors of
both parts of this volume (as well as of other volumes in the Encyclopaedia of
Mathematical Sciences). He played an active part in preparing the detailed plan of
this volume and in discussions of some of its key sections. While writing this book
the authors have continually referred to his texts, both published and unpublished.
Unfortunately for purely formal reasons V.A. Rokhlin cannot be considered to
be our coauthor; indeed, we very much doubt that our text would meet with his
approval. In spite of this, we dedicate this volume with gratitude to the memory of
Viadimir Abramovich Rokhlin.

* Publisher’s note: This is the Preface to the Russian edition of Enc. Math. Sc. 24, thus
referring only to Parts 1 and II of the present volume. For organisational reasons the second
part of the Russtan edition of Enc. Math. Sc. 12 was added to this volume as Part IJL.
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Chapter 1
Basic Concepts

§1. Terminology and Notations

1.1. Set Theory.

In addition to the standard set-theoretical terminology and notations, whose use
is unambiguous, we shall use the following.

If A is a subset of a set X, the inclusion of A in X may be regarded as the map
defined by x — x. Notation: in : A — X. If there is no ambiguity about A and X,
we simply write 1n.

If A is a subset of X and B a subset of Y, then to each mapping f : X — Y such
that f(A) C B, there corresponds the map fla g : A — B defined by x = f(x),
called a submap of f. If there is no ambiguity about A and B, we may just write
f| instead of fla. p. 1f B =Y, then f|a p is also called the restriction of [ to A
and denoted by f|a.

The quotient (or factor) set of X under a partition S is denoted by X/S. The
map X — X/S that takes each point to the element of the partition containing it
1s called the projection, denoted by pr.

If S and T are partitions of sets X and Y, and f : X — Y is a map that
maps the elements of S to the elements of 7', then there is a corresponding map
X/8 — YT, taking an element A of S to the element of T that contains f(A).
This map is denoted by f/S, T, and is called the quotient map of f. In particular,
it is defined when T is the partition into single points, and f is constant on the
elements of S. Thus, to each map f : X — Y constant on the elements of a
partition S of X, there corresponds a map X/S — Y it is denoted by f/S. If there
is no ambiguity about S and T, we simply write f/ instead of f/S,T.

The sum of a family of sets {X,}uem is the union of disjoint copies of the
sets X, that is, the set of pairs (x,,, u) such that x, 1s an element of the set X,.
Notation: [ [,y X, The map of X, (v € M) into | [, s X, defined by x +— (x, v)
is denoted by in, Each family of maps {f, : X, — Y.}uem determines a map
Hoem Xu — [l cp Yu in @ natural way; it is called the sum of the maps f,
and denoted by [] ., fu. If M consists of the numbers 1,...,n, then we write
Xi 1] -1 X fill-- 1] fu as well as [ ] X,, and 1 fe-

The map X; X ... X X, = Xt (x1,..., %) — x; is called the ith projection,
denoted by pr,. If we have maps fi: Xy = Y, ..., fu : Xu = Vo, then there is a
map X) X ...xX X, = Yy x . . xY, (X x) (e, ., Julxp)), called
the product of the maps fy, ..., f, and denoted by fi x -+ X f,

1.2. Logical Equivalence.
We shall usc the expression “iff” to mean “if and only if”.



I. Introduction to Homotopy Theory 5

1.3. Topological Spaces.

A. If A is a subset of a topological space X, then its interior will be denoted
by Int A, or more precisely Inty A, its closure by Cl A, or ClyA, and finally, its
frontier, that is, C1A \ Int A by Fr A, or FryA.

B. Our notations for the standard topological spaces will follows those of D.B.
Fuchs in Part III of the present volume. In particular, the fields of real and complex
numbers are denoted by R and C, the skew field of quaternions by H, and the
algebra of Cayley numbers by Ca. The corresponding n-dimensional spaces, that
is, the n-fold products R x -+ xR, Cx -+ x C,H x ---H and Ca x --- x Ca
are denoted by R”, C", H* and Ca". We regard R” as a metric space with the
distance between (x1, . .., x,) and (y1, ..., y,) defined as [3°7_ (x; — y:)*1"/* The
spaces C", H", and Ca” can be naturally identified with R?*, R, and R*", and in
particular have natural metrics and topologies. The closed ball and sphere in R”
with centre (0,0, ..., 0) and radius 1 are called simply the n-ball and (n — 1)-
sphere, and denoted by D" and $"~!. In particular, d° is a point, S° a pair of
points, and S™! = @. The unit interval [0, 1] C R is denoted by I. I" denotes
the unit n-cube {(x;,...,x,) € R0 < x;, < 1,i = 1,...,n}; its frontier (in
R") is denoted by 31,. Real projective n-dimensional space is denoted by RP",
complex by CP”*, quaternionic projective space by HP", and the Cayley projective
line and plane by CaP' and CaP?. Recall that RP!, CP!, HP', and CaP' are
canonically homeomorphic to the spheres S!, S2, S, and S®. The real Grassmann
manifolds are denoted by RG(m, n) or G(m, n). By definition, G (m, n) is the set of
n-dimensional (vector) subspaces of the space R™*". The manifold of oriented n-
dimensional subspaces of R™™" is denoted by G, (m, n). The complex Grassmann
manifold of n-dimensional (complex vector) subspaces of C™** is denoted by
CG (m, n). The corresponding quaternionic Grassmann manifold is HG(m, n).

C. The appearance of the symbol oo as a dimensional parameter denotes passage
to the inductive limit. Thus R™ is the inductive limit of the sequence of spaces
R* with the natural inclusion R¥ — R**! : (xy,...,x) = (X1, ..., Xk, 0). The
points of R™ may be interpreted as infinite sequences (x1, x2, . ..) of real numbers,
in which only finitely many terms are non-zero. A topology is introduced into R*
by the rule: a set U C R™ is open if all the intersections U N R" are open in
the spaces R". The symbols C*, H>®, D*, §°, RP®, CP*, HP*®, G(oo,n),
G (00, 00) etc. are interpreted similarly. None of these spaces are metrizable.

1.4. Operations on Topological Spaces.

A. The sum || uem Xu of a family of topological spaces is canonically provided
with a topology: a subset of the sum is declared to be open if its inverse images
under all the maps in, : X, — [, 4 X, are open. It is clear that each of the
maps in, is an embedding and that the images in,(X,) are simultaneously open
and closed in [ ] X,,. It is also clear that if f, : X, — Y, u € M, are continuous
maps, then their sum | [,y fu © L ep Xu = Len Yu is continuous.

B. The product X; x --- x X, of topological spaces X1, ..., X, is canonically
provided with a topology: a basis for the open sets in X; x .-+ x X, consists
of the sets Uy x --- x U, C X X --- X X,, where Uy, ..., U, are open sets
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in Xy,..., X,. It is clear that the projections pr; : X; X -+ X X, — X; are
continuous open maps for any spaces X;,..., X,. If ¥, X1,..., X, are any sets
whatever, then to each map f : ¥ — X; x --- x X, there correspond the maps
pr;o f: ¥ — X;, and for any given maps f; : ¥ — X, there exists a unique map
f:Y > Xy x---x X, withpr, o f = f;. It is clear that if ¥, X;,..., X, are
topological spaces, then f is continuous iff all the pr; o f are continuous. It is also
evident that the product fy x ---x f: Xy x--- x X, = ¥; x .. x Y}, of continuous
maps f1: X1 = Yy,..., fa: Xy = Y, is continuous.

C. The quotient space X/S of a topological space X with respect to any partition
S has a natural topology: a set is open if its inverse image under the map pr : X —
X /S is open. This natural topology is called the quotient topology, and the set X/ S
endowed with this topology is called the quotient space of X with respect to the
partition S. The map pr: X — X/S§ is clearly continuous.

In the special case when all the elements of S are points except for a single set
A, the space X/S is called the quotient of X by A and denoted by X/A.

It follows from the definition of the quotient topology that if X and Y are any
topological spaces with partitions S and T, and f : X — Y is a continuous map
taking the elements of S into elements of T, then the map f/S, T : X/S — Y/T
is continuous.

D. Let X and Y be topological spaces, A a subsetof Y, and ¢ : A »> X be a
continuous map. The quotient space of the sum X [ | ¥ with respect to the partition
into one-point subsets of ¢ | [(Y \ A) and sets of the form x | [ ¢~ (x) with x € X
is denoted by X Uy Y; we say that it is obtained by artaching Y to X by ¢. It is
clear that the natural injection X — X U, Y is a topological embedding. In the
case when X is a point, attaching ¥ to X by ¢: A — X is clearly equivalent to
forming the quotient space Y/A.

E. The product of the interval I = [0, 1] with the space X is called the cylinder
over X. The subsets X x 0 and X x 1 of X x I are called its (lower and upper)
bases (they are copies of X), and a subset of the form x x I, x € X, is called
a generator (it is a copy of I). If all the points of the base X x 0 are identified
to each other, we obtain the cone CX = X x I/X x 0 over X. The cone CX
has a base, usually identified with X — the image of the upper base of X x I —
and a vertex, the point obtained from the lower base X x 0. The images of the
generators of the cylinder under the map pr: X x / — CX are called generators
of the cone. If we take the quotient of the cone with respect to its base, we obtain
the suspension XX over X; thus XX = CX/X. Alternatively we may say that
X X is obtained as the quotient space of the cylinder X x I with respect to the
partition whose elements are the bases X x 0 and X x 1 and the one-point subsets
of X x (0, 1). The images of the bases are called the vertices of the suspension.
The sets pr(x x I) are the generators of the suspension. The set pr(X x %) is the
base of the suspension, and is a copy of X. The suspension X may be regarded
as two cones over X joined together by their bases. The joined bases form the

base of the suspension. It is clear that CS" and S" are homeomorphic to D™*! and
Sn-H .
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To each map f : X — Y there corresponds the map f xid: X xI — Y x I and
its quotient maps CX — CY and ¥X — XY are continuous if f is continuous.
The map (f xid)/ : X — XY is denoted by X'f and called the suspension of
the map f.

F. It is convenient to regard the join X Y of the spaces X and Y as the union of
the line segments joining each point of X to each point of Y. For example, the join
of two segments lying on skew lines in R? is a tetrahedron. A formal definition of
the join is the following: it is obtained as the quotient of X x ¥ x I with respect to
the partition whose elements are the sets x X ¥ x0 (x e X)and X xy x 1 (y € Y¥)
and the points of X x ¥ x (0, 1). The setpr(ix x y x ) C X*Y,xe€ X,ye€Y,is
called a generator of the join; it is just the segment joining x € X and y € Y. X and
Y themselves are embedded in X Y as follows: X — X *Y : x > pr(x x Y x 0)
and Y - X xY : y — pr(X x y x 1). Their images under these embeddings
are called the bases of the join. The generators cover the join. Each of them is
determined by the points of the base that they join. Two distinct generators can
intersect only in a single point and this point can only lie in one of the bases.
Equivalently the join X # Y can be defined as (X [[Y) Uy (X X Y x I), where ¢
isthemap X x Y x (OU1) - X[[Y with ¢(x,y,0) = x, ¢(x,y,1) = y. The
quotient space of X x ¥ with respect to the partition consisting of the bases X, Y
and the points of the complement (X % ¥Y) \ (X UY) is the same as the suspension
X xY).

The operation * (like x) is commutative: there is an obvious canonical home-
omotphism ¥ * X — X % Y. It can be shown that for Hausdorff locally com-
pact spaces the operation * is associative, but this is not true in general. In
fact, if X and Y are Hausdorff and locally compact, the maps X x ¥ —
CX xCY :pr(x,y,t) = (pr(x, 1 —¢),pr(y,t)) is a toplogical embedding with
image {(pr(x, s),pr(y,2)) € CX x CY|s +t = 1}. By repeating this construc-
tion in the case of locally compact Hausdorff spaces Xj, ..., X,, we can obtain a
homeomorphism of ((X; * X») *...) = X,, onto the space

{(pr(x1, t1), ..., pr(xn, ) €CXy X --- X CXplty +...+ 1, = 1}

and then use the associativity of the operation x.

The join X % D is canonically homeomorphic to the cone CX, and X  S° to
the suspension X X. The join X * S* is canonically homeomorphic to the multiple
suspension £**1X; in particular, S? % §7 is canonically homeomorphic to SP+4+1,

To each pair of maps f; : X; — Yy, fo : X — Y, there corresponds the
map (fi x fo x1idr)/ : Xy * Xa — Y} * ¥», which is continuous if f; and f; are
continuous. It is denoted by f * f5.

G. Let f : X — Y be a continuous map. The result of attaching the product
X xItoY bythemap X x1 — Y : (x,1) > f(x) is called the mapping
cylinder of f, and denoted by Cylf. The subsets of Cylf obtained from X x 0
and Y are called the lower and upper bases of Cylf. The bases are related to
X and Y by obvious canonical homeomorphisms and are usually identified with
X and Y. The subsets of Cylf obtained from x x I with x € X are called the
generators of Cyl f; they are canonically homeomorphic to I. There is a canonical
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map Cylf — VY, taking each generator to its point of intersection with Y. It is
clear that the composition of the inclusion X — Cyl f and this map Cylf — Y is
equal to f.

The result of attaching the cone CX to Y by the map f of its base is called the
mapping cone of f, and denoted by Conf. Clearly Conf = Cylf/X. The subset’
of Conf obtained from Y is called the base of Con f; it is obviously canonically
homeomorphic to ¥ and is usually identified with Y.

If Y = X and f = idy, then Cylf is canonically homeomorphic to X x 7, and

Conf to CX.

H. If X and Y are topological spaces, let C(X, Y) denote the set of all con-
tinuous maps X — Y. If Ay,..., A, are subsets of X, and B,, ..., B, subsets
of Y, then C(X, Ay,..., A, Y, By, ..., B,) denotes the subset of C(X,Y) con-

sisting of the maps ¢ for which ¢(A,) C By,...,¢»(A,) C B,. The notation
¢ (X, A1, ...,A;) > (Y, By,..., B,) is used for such maps.

The set C(X,Y) is endowed with the compact-open topology — the topology
of uniform convergence on compact sets (that is, the topology with a basis of sets
of the form C(X, Ay, ..., A.; Y, By,..., B,), where Ay, ..., A, are compact and
By, ..., B, are open). As well as C(X, Y) all the sets C(X, Ay, ..., A,; Y, By, ...,
B,) also become topological spaces.

It is clear that if X is a point, then C(X,Y) =Y; if X is a discrete space with
n points (that is, a collection of n isolated points), then C(X,Y) =Y x---x Y (n
factors). This is the reason for denoting the space C(X,Y) by YX.

Let X, ¥, Z be topological spaces. To each continuous map ¢ : X x Y — Z
there corresponds the continuous map ¢V : X — C(X, Z) defined by [¢V(x)](y) =
¢(x, y). It can be shown that the map C(X x ¥, Z) - C(X,C(Y,Z)) : ¢ —
¢" is continuous, and is a homeomorphism if ¥ is regular and locally compact.
This relation between C(X x ¥, Z) and C(X, C(Y, Z)) makes the notation Y for
C(X,Y) even more attractive: it takes the form of the equation ZX*¥ = (Z")X,
and is called the exponential law. For any topological spaces X, Y7, ..., ¥,, there
is a canonical homeomorphism C(X,¥; x--.x¥,) > C(X, Y1) x--- X C(X, Y,) :
fr> @ ofi..,pryo f).

1.5. Operations on Pointed Spaces.

In homotopy theory we often have to consider not merely topological spaces,
but pointed spaces, that is, each space considered contains a distinguished point, or
base point, and all maps considered take base points to base points; identical spaces
with different base points are regarded as though they were different spaces. The
transition to pointed spaces shows itself to a greater or lesser extent in all operations
on spaces. For some operations the modification just consists in providing the
resulting space with a base point. For example, the base point in the product X x Y
is (x9, yo), Where xq, yo are the base points of the factors. Some operations need
to be modified more significantly. Thus in the cone CX, all the points of the
generator corresponding to the base point of X are identified to each other. Similar
modifications are made to the suspension, join (in which the points of the generator
joining the base points of the factors are identificd), and the mapping cylinder and
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cone (where it is of course assumed that the base point is mapped to the base
point). In each case the point to which the generator is shrunk is taken as the base
point. With these modifications, we still have the homeomorphisms CS” = DL
XSt = XS and SP % 89 = $PT9tL if (1,0, ..., 0) is taken as base point in the
spheres and balls.

The space of mappings reduces to the space of mappings that take base point
to base point. The base point of C(X,Y) is the map taking the whole of X to
the base point of Y. In homotopy theory a special role is played by the space
of continuous maps of the circle with base point into a pointed space; notation:
(X, x0) = C(S', (1,0); X, x0), abbreviated to £2.X; it is called the logp space of
X with origin at xo. The same terminology and notation is also used for the space
C(I,0U1; X, xq), related to C(S!, (1, 0); X, x¢) by the canonical homeomorphism
C(SY, (1,00 X, x0) = CU,0U1; X, x0) : f > [t = f(¥™)].

Finally we shall describe two operations that are specific to pointed spaces.
Let {X,} eu be a family of pointed topological spaces with base points x,,. The
quotient space of the sum [],., X, by the subset ][, x, is called the bouguet
of spaces X, denoted by \/ s Xy, ox, more precisely, \/,,cp (Xp x,)- The point
pr(Ll,cp Xu) is called the centre of the bouquet, and is naturally taken as base
point. The bouquet \/MeM X, is covered by copies of the spaces X, (usually
identified with X,), which intersect each other only in the centre of the bouquet.
Figure 1 shows a bouquet of two circles (“figure of eight”).

Fig. 1
Let X1, ..., X, be topological spaces with base points x1, . .., x,. The canonical
embeddings X| — X1 X--- XX, 1 x> (X, X0, ..., Xp)y o0y Xg = XX oo X Xy
x > (X1, ..., Xo_1, x) determine a canonical embedding (X1, x1)V- - -V(Xy, xn) =

X x -+ x X,, which allows us to regard the bouquet X; v ---V X, as a subspace
of X; x --- x X,. The quotient space X; X --- X X,/ X1V ---V X, is called the
smash product or tensor product of X1, ..., X,, and is denoted by X, ® - - - ® Xa,
or, more precisely, by (X1, X)) ® - - ® (X,, x,). The notations X; A--+- A X, and
X #-.-#X, are also used. The point pr(X; V-V X,) € X1 ® - ® X, is called
the centre of the tensor product and is taken as base point. It is not hard to see
that S” ® §9 = SP*+4, and that for any pointed space X, XX = X ® §'.

If {X,}uem and {Y,} en are families of pointed spaces and {f,, : X, = Yuluem
is a family of continuous maps (taking base points to base points), then this gives
rise to a continuous map (L[ fu)/  V yem Xu = V pear Yu, denoted by Voyem fu-
Themap 1® - ® [, : X1® X, > V1@ --®Y, is defined similarly.



10 0.Ya. Viro, D.B. Fuchs

§2. Homotopy

2.1. Homotopies.

A. A continuous map g : X - Y is said to be homotopic to a continuous
map f : X — Y if there exists a continuous map H : X x I — Y such that
Hx.0) = f(x), H(x, 1) = g(x) for all x € X. Any such mapping is called a
homotopy connecting f and g. We also say that H is a homotopy of f.

Homotopy is clearly an equivalence relation. It divides the space C(X,Y) of
continuous maps of X into Y into equivalence classes called homotopy classes.
The set of these classcs is denoted by (X, Y).

B. As an example of homotopy we may take rectilinear homotopy. Let f and
g be continuous maps of X into a subspace Y of R". If for each point x € X, the
line segment joining f(x) to g(x) lies entirely in ¥, then the formula H(x,t) =
(1 — 1) f(x) 4 tg(x) defines a homotopy between f and g. Such a homotopy is
called rectilinear. Hence any two maps of an arbitrary space into a convex subspace
of a Euclidean space are homotopic.

CIff, fl:X—>Y, g:Y — Y, h:X — X are continuous maps
and F : X x I — Y is a homotopy between f and f’', then g o F o (h x 1d,)
is a homotopy between g o f o h and g o f' o h. Hence the mapping C(g, h) :
C(X,Y) —» C(X',Y"), induced by the maps g and h, takes homotopy classes
to homotopy classes. The mapping (X, Y) — (X', Y’) arising in this way is
denoted by m(g, k). It is determined by the homotopy classes of g and h. The
mapping (g, id) : T(X,Y) — n(X,Y’) is also denoted by g., and the mapping
7@d, h) : w(X,Y) - n(X',Y) by h*.

D. Let A be a subset of X. A homotopy H : X x I — Y is said to be relative to
A, or, briefly, to be an A-homotopy, if (H(x,t) = H(x,0) forallx € A,z € I. Two
maps that can be connected by an A-homotopy are said to be A-homotopic. Clearly,
A-homotopic maps coincide on A. If we want to emphasize that a homotopy is not
relative, we call it free.

Like ordinary homotopy, A-homotopy is an equivalence relation. The classes
into which it divides the set of continuous maps X — Y that agreec on A with
a given map f : A — Y, are called A-homotopy classes, or, more precisely,
homotopy classes of continuous extensions of f to X.

Note that the rectilinear homotopy between f and g is relative to the set on
which f and g coincide.

2.2. Paths.

A continuous mapping of the interval / into X is called a path in the space X.
The points s(0) and s(1) are called the origin and end of the path s. If s(0) = s(1)
the path s is called closed. Closed paths are also called loops.

If s is a path, the path defined by 7 > s(1 — 1) is called the inverse of S, and
denoted by s!. The path defined in terms of paths s, and s, with 5,(1) = 52(0)
by the formula

s1(21), if t

IA

R —= B =

=

v

552 —1), ift



