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Preface to the Third Edition

In the present edition we have made changes in Chapter 1, mainly as a result of comments
by Professor A. S. Besicovitch. Some theorems are stated more explicitly, a few proofs are
added, and some are shortened. We are indebted to him for an elementary proof of the
theorem of bounded convergence for Riemann integrals, which appears in the notes. In
Chapter 8 the proof of Poisson’s equation has been improved. In Chapter 17 we have
discussed the Airy integral for complex argument in more detail, and have given con-
ditions for uniformity of approximation for asymptotic solutions of Green’s type for
complex argument. In Chapter 23 we have added some remarks on the analytic continua-
tion of the solutions, and a note applies them to the parabolic cylinder functions.

Woe should like to express our thanks to several readers for drawing our attention to

errors and misprints, HAROLD JEFFREYS

BERTHA JEFFRE
April 1963 JEFFREYS

Preface to the Second Edition

As a second edition of this book has been called for, we have taken the opportunity of
making considerable revisions. Most of the notes at the end have been incorporated in
the text. Otherwise the principal changes are as follows. In Chapter 1, the Heine-Borel
theorem and Goursat’s modification have been placed early, and used to derive several
theorems that had been proved by separate applications of methods that could be used
to prove the general theorems. In other respects, notably the theory of the Riemann
integral, the theory has been given more fully. In Chapter 4 an account of block
matrices has been added, and the theorem on characteristic solutions of commuting
matrices has been more fully discussed. Chapter 5 (multiple integrals) has been almost
completely rewritten, and now includes an account of the theory of functions of several
variables, part of which was given in Chapter 11. In Chapter 9 the treatment of re-
laxation methods has been extended, and should now serve as an adequate introduction
to the special works on the subject. Many improvements have been made in Chapters 11
and 12, including an important correction to the proof of Cauchy’s theorem, a proof of
the Osgood-Vitali theorem, and a complete revision of the theory of inverse funotions.
In Chapter 17 the conditions for tne truth of Watson’s lemma have been somewhat
relaxed, 80 that they are now wide enough to cover almost all physical applications,
and the method of stationary phase is more fully treated. In Chapter 24 the treatment
of multipole radiation has been extended.

Where possible the proofs have been either replaced by shorter ones or generalized.
Some new examples have been added.

We are indebted to numerous correspondents for pointing out errata. The two most
serious corrections were given by Professor J. E. Littlewood and Dr M. L. Cartwright.
We are particularly grateful for comments by Professor Littlewood (Chapters 1, 5, 11 and
12), Mr P. Hall (Chapter 4), Professor A. 8. Besicovitch and Dr J. C. Burkill (Chapter 5).

HAROLD JEFFREYS
15 November 1948 BERTHA JEFFREYS



Preface to the First Edition

This book is intended to provide an account of those parts of pure mathematics that are
most frequently needed in physics. The choice of subject-matter has been rather difficult.
A book containing all methods used in different branches of physics would be impossibly
long. We have generally included a method if it has applications in at least two branches,
though we do not claim to have followed the rule invariably. Abundant applications to
special problems are given as illustrations. We think that many students whose interests
are mainly in applications have difficulty in following abstract arguments, not on account
of incapacity, but because they need to ‘see the point’ before their interest can be
aroused.

A knowledge of calculus is assumed. Some explanation of the standard of rigour and
generality aimed at is desirable. We do not accept the common view that any argument
is good enough if it is intended to be used by scientists. We hold that it is as necessary
to science as to pure mathematics that the fundamental principles should be clearly
stated and that the conclusions shall follow from them. But in science it is also necessary
that the principles taken as fundamental should be as closely related to observation as
possible; it matters little to pure mathematics what is taken as fundamental, but it is of
primary importance to science. We maintain therefore that careful analysis is more
important in science than in pure mathematics, not less. We have also found repeatedly
that the easiest way to make a statement reasonably plausible is to give a rigorous proof.
Some of the most important results (e.g. Cauchy’s theorem) are so surprising at first
sight that nothing short of a proof can make them credible. On the other hand, a pure
mathematician is usually dissatisfied with a theorem until it has been stated in its most
general form. The scientific applications are often limited to a few special types. We have
therefore often given proofs under what a pure mathematician will consider unneces-
sarily restrictive conditions, but these are satisfied in most applications. Generality is
a good thing, but it can be purchased at too high a price. Sometimes, if the conditions
we adopt are not satisfied in a particular problem, the method of extending the theorem
will be obvious; but it is sometimes very difficult, and we have not thought it worth
while to make elaborate provision against cases that are seldom met. For some exten-
sive subjects, which are important but need long discussion and are well treated in some
standard book, we have thought it sufficient to give references.

We consider it especially important that scientists should have reasonably accessible
statements of conditions for the truth of the theorems that they use. One often sees a
statement that some result has been rigorously proved, unaccompanied by any verifica-
tion that the conditions postulated in the proof are satisfied in the actual problem—and
very-often they are not. This misuse of mathematics is to be found in most branches of
science. On the other hand, many results are usually proved under conditions that are
sufficient but not necessary, and scientists often hesitate to use them, under the mistaken
belief that they are necessary. We have therefore often given proofs under more general
conditions than are usually taught to scientists, where the usual sufficient conditions
are often not satisfied in practice but less stringent ones are satisfied. Both troubles are
due chiefly to the fact that the theorems are scattered through many books and papers,
and the scientist does not know what to look for or where to look.



Preface : vii

The book can be read consecutively, but some parts are independent of much that
precedes them, and it is possible, and indeed desirable, to study different chapters con-
currently. In some cases we have given special cases of a theorem before the general
form where the latter involves more elaborate treatment, especially where the student
is likely to meet applications to several instances of the special cases before he needs
the general theorem.

We hesitated before including a chapter on the theory of functions of a real variable.
This is far from a complete treatment, but fuller works are mostly longer than the
theoretical physicist has time to read; and unfortunately they sometimes relegate
theorems that are frequently needed to small type or unworked examples, or omit them
altogether. We have aimed at giving accounts of the principal methods of the theory
but not at proving every resuit in detail; but we think that students will benefit by
filling in some of the details for themselves. If a student has difficulty in achieving the
degree of abstraction needed in most of this chapter, we advise him to read as much as
he can stand and then proceed to a later chapter, referring back when necessary. He
will find that he has covered the whole of it before finishing Chapter 14, and that he
knows both what is there and why it is there. We have not succeeded in avoiding forward
references altogether, but the most serious, the proof in Chapter 12 of the theorem that
an algebraio equation of degree n has n roots, used in Chapter 4, is so time-honoured
that a few smaller transgressions may, we hope, be forgiven.

The notation of special functions has grown up haphazard, and is inconvenient in
several respects. Quantum theorists are making wholesale changes of definition to
ensure normalization, but we consider that this replaces the old complications by new
ones. We have modified the usual definitions of the Legendre functions, with the result
that 8 more symmetrical treatment becomes possible and the relation to Bessel functions
becomes free from complicated numerical factors. We have returned to Heaviside's
definition of the function K, but denoted it by Kh,. Among other advantages, this
simplifies the relation to Legendre funoctions of the second type. We have also dropped
the I' notation for the factorial function, which seems to have no recommendations
whatever.

The immediate stimulus for the book was the announcement that the second edition
of Operational Methods in Mathematical Physics by one of us was out of print. Most of
this tract has been inocorporated and later developments have been added. The chapter
on dispersion was somewhat out of place in the tract, as it was largely indépendent of
the operational method, but was included because the notion of group velocity had not
previously been discussed in relation to the method of steepest descents. It now finds
a more natural place in a chapter on asymptotic expansions, in which some methods
widely used but hitherto accessible only in scattered papers are also described. Most
of Cartesian Tensors has also been incorporated. The applications of thermodynamics
in it to hydrodynamics and elasticity would be more suitably treated in textbooks of
the latter subjects.

‘We have not tried to give a detailed account of any branch of physics; that is a matter
for the special text-books.

We are deeply indebted to many friends for their encouragement during the writing
of this book. Above all we must thank Dr F. Smithies, who placed his great knowledge
freely at our disposal, and generously helped in the proof reading. His suggestions have
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been invaluable. It is only fair to him to say that in some places we have persisted in
our ways in spite of his vigorous protests. Dr J. C. P. Miller gave us special help with
Chapters 9 and 23, and Mr H. Bondi with Chapter 24. We have also had valuable
suggestions at various points from Professors M. H. A. Newman, A. C. Offord,
L. Rosenhead and H. W. Turnbull, and from Mr A. S. Besicovitch, Miss M. L. Cartwright
and Mr D. P. Dalzell.

We also thank the Universities of Cambridge, London and Manchester for permission
to use examination questions as examples, and the staff of the Cambridge University
Press for their care in the printing and their readiness to meet the wishes of & rather
exaoting pair of authors.

HAROLD JEFFREYS

BERTHA JEFFREYS
1946

The main sections of each chapter are numbered decimally at intervals of 0-01;
subsections are indicated by further decimals. When the argument of a section or
subsection continues that of the previous one, the numbering of the equations also
oontinues.

Notes at the end are numbered according to the subsection referred to; references to
them are indicated by a small index letter in heavy type in the text; for instance, the ®
on p. 52, in subsection 1-134, refers to note 1-134a, which will be found on p. 692.

Sources of examples are indicated by the following abbreviations:

M. T. Mathematical Tripos, Part II and Schedule A.
M. T, Sched. B. Mathematical Tripos, Part III and Schedule B.
Prelim. Preliminary Examination in Mathematics.
M/o, II1. Manchester, Final Honours in Mathematios.

1C. Imperial College, London.
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Inthissecond impressionof the Third Edition, the following notes
have been added : 5-051a on differentiation under the integral
sign, 10-11g on a method used in planetary theory 23-07a
giving references for work on Coulomb wave functions. Para-
graphs 10-01, 10-013 on the Calculus of Variations have been
revised. Some minor corrections and addenda have been made in
the text and examples.

July 1961

In this third impression of the Third Edition, the following notes
have been added :9-041a on interpolation when first derivatives
are given and 9-181a on the advance in automatic computation.
The treatment of orthogonal transformations in Chapter 4 has
been extended and an amendment has been made to the proof
of Watson’s lemma in 17-03. Further minor corrections and
addenda have been made in the text and examples.

March 1966

In this paperback edition of the Third Edition, the following
alterations have been made: 23-07 on Schriodinger’s equation
for the hydrogen-like atom has been revised and the note 23:07a
expanded, and in the Addenda there are references to work on
Isotropic Tensors in the note 3-031a. Further minor corrections
have been made in the text.

January 1972
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Chapter 1
THE REAL VARIABLE

*In dem days dey wus tus fon' er mi *
JOEL CHANDLER HARRIS, Uncle Remus

1-01. The relation of mathematics to physics. The simplest mathematical
notion is that of the number of a class. This is the property common to the class and to any
class that can be matched with it by pairing off the members, one from each class, so that
all members of each class are paired off and none left over. In terms of the definition we
can give meanings to the fundamental operations of addition and multiplication. Con-
sider two classes with numbers a, b and no common member. The sum of @ and b is the
number of the class consisting of all members of the two classes taken together. The
product of a and b is the number of all possible pairs taken one from each class. We cannot
always give meanings to subtraction and division, because, for instance, we cannot find
a class whose number is 23 or 7/5. But it is found to be a great convenience to extend the
notion of number so as to include negative numbers, ratios of numbers irrespective of
whether they are positive or negative, and even irrational numbers. When this is done
we can define all the four fundamental operations of arithmetic, and the result of carrying
them out will always be a number within the system. We need trouble no more about
whether an operation is possible with a particular set of numbers, since we know that it is,
once we have given sufficient generality to what we mean by a number. So long as we
keep to the fundamental operations we can use algebra; that is, we can prove formulae
that will be correct when any numbers whatever are substituted for the symbols in them,
with only one exception, namely, that we must not divide by 0.

Now the formulae may still be correct when we replace the letters in them by something
other than numbers,and it is to thisfact that the possibility of mathematical physics isdue.
It is therefore useful to know just what conditions have to be satisfied if we are to take
over the rules of algebra into any subject that does not deal entirely with numbers. We
may then have to find new meanings for the fundamental operations (or have them found
for us) and for the sign =, but can still manipulate the symbols with their new meanings
in the old way. A suitable set of conditions is as follows.* We say that they are to hold
in a field F consisting of all elements of the system considered:

(1) Forany a, b of F, a+b and ab are uniquely determined elements of P,

{2) b+a = a+b. (Commutative law of addition.)

(3) {a+b)+¢ = a+(b+c). (Associative law of addition.)

(4) ba = ab. (Commutative law of multiplication.)

(6) a(bc) = (ab)c. (Associative law of multiplication.)

(6) a(b+c) = ab+ac. (Distributive law.)

(7) There are two elements 0 and 1 in F, such thata+0 =g, al = a.

(8) For any element g of F there is an element z of F such that a +z = 0.

(9) For every element a of F, other than 0, there is an element y of F such that ay = 1.

* Stated first by Dedekind for the case where + and x have their ordinary arithmetio meanings;
in general by H. Weber.



2 Mathematics as a language 1-01

Tt is to be noticed that the first seven rules are true if F' consists only of the positive
integers and 0, but the last two are false of that F', since there is no positive or zero
integer z that makes a+z = 0 if ¢ = 1, and there is no positive or zero integer y that
makes ay = 1 if a = 2. The eighth rule introduces negative numbers and hence sub-
traction. The ninth introduces reciprocals and hence division and rational fractions.
The rules are true if F consists of all rational numbers, positive or negative.

The rules mention no ordering relation: that is, they suppose a meaning attached to
equality and therefore to %, but do not distinguish between greater and less. We could
agree to arrange the numbers in any order, keeping the same correspondences between
them according to (1), (7), (8), (9), and the rules would still be true. Algebra and pure
geometry can get on to some extent without such a distinction, but higher mathematics
cannot, nor can any kind of physics. A measurement is not a statement of exact equality
but of equality within a certain range of error. We therefore need new rules concerning
inequalities.

(10) For any a, b of F, eithera>b, @ = b, or b>a. (Law of comparability.)

(11) For given a, b of F, only one of 6> b, @ = b, b > a can be true. (Trichotomy.)

(12) Ifa>b and b>¢, then a>c. (Transitive property.)

(13) If a > b, then a +¢> b+ ¢ for any ¢. (Additivity of ordering.)

(14) If a > b, ¢> 0, then ac> be. (Multiplicativity of ordering.)

(15) If a>b, b <a. (Definition of <.)

The use of mathematics in science is that of a language, in which we can state relations
too complicated to be described, except at inordinate length, in ordinary language. The
rules satisfied by the symbols are the grammar of the language. This point of view has
been developed greatly in recent years, especially by R. Carnap. But for a language to
be suitable it must satisfy two conditions. It must be possible to say in it the things that
we need to say; that is, it must have sufficient generality. It must also be self-consistent;
that is, starting from the rules themselves it must be impossible to deduce something
declared to be false by those-rules. It would, for instance, be fatal to the scientific useful-
ness of mathematics if it was possible to prove by it that for some @ and b, a is both greater
and less than b. It was always taken for granted until the later nineteenth century that
mathematios was consistent. But then an unexpected set of difficulties cropped up, and
showed that a complete analysis of the foundations was necessary. The great Principia
Mathematica of Whitehead and Russell showed that all the propositions asserted in
mathematics concerning real numbers (not only ratios of integers, positive or negative)
could be restated as propositions about the elementary notion of comparing classes by
pairing their members, and demonstrable from the axioms of such comparizon and others
relating to pure logic. Later workers have modified some of the latter axioms, and the
best choice of axioms is still & matter of discussion. Godel and Carnap, more recently,
have shown that the proposition that a given system of axioms for mathematics is con-
sistent cannot be proved by methods using only the rules of the system. But it is found
impossible to prove certain propositions that could be proved if the system was inconsis-
tent. We have to come back to something like ordinary language after all when we want
to talk about mathematics! This work on the boundary between logic and what we usually
consider the elements of mathematics has a considerable modern literature, and it is well
for physicists to know of its existence, though its detailed study is a matter for specialists.
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1'02. Physical magnitudes. Generality requires that, in any particular fleld, the
language shall contain symbols for the things that we need to talk about and for the
processes that we carry out. A shepherd would be severely handicapped if he had to do
his best with a language containing no words for sheep and shearing; in fact he would
make such words, and that is what we habitually do in science. So long as the language
is oonsistent it is none the worse for containing a lot of words that we do not use. A pure
mathematician, working entirely on the theory of numbers, can use ordinary algebra
freely in spite of the fact that he may not need to use negative numbers or fractions. For
him rules (8) and (9) are just an unnecessary generality. Now in physics the fundamental
notion of measurement corresponds closely to that of addition, and most physical laws
are statements of proportionality, which corresponds to the notions of multiplication and
division. This is the ultimate reason why mathematics is useful. Thus, for instance, we
can say that if two bars are piaced end to end to make one straight bar, the length of the
combined bar is the sum of those of the original ones. This is not & theorem or an experi-
mental fact; it is the definition of addition for lengths. Further, it is irrelevant which is
taken first; thus the commutative law of addition holds. Again, if we unite three bars, the
total length is independent of the order; hence the associative law of addition also holds.
These are experimental facts established by actual comparison with other bars. These
rules are enough to justify the use of scales of measurement for length, by which any
length is compared with a standard one by means of a scale, every interval of which has
been compared with a standard object in the process of manufacture. Quantities measur-
able by some process of physical addition have been called fundamental magnitudes by
N. R. Campbell.* The most widely important ones are numbers (of classes), length, time,
and mass, but physical processes of addition can also be stated for area and volume, for
electric charge, potential, and current, and many other quantities.

There is a divergence of practice among physicists at the next stage. A statement that
adistance is 3-7 cm. contains a number and a unit. It is often thought that algebra applies
only to numbers and therefore that in the mathematical treatment the symbol used for
the distance refers only to the 3:7 and not to the centimetres. The unit matters, otherwise
we should find ourselves saying that 10 mm. expresses a different length from 1 om. and
that 1 cm. is the same as 1 mile; and this is contrary to physics because the onlyjustifica-
tion of using measurement at all is in the direct physical comparison by superposition.
We avoid this difficulty if we say that the symbol for the length refers to the length itself
and not simply to the number contained in its measure. ‘1 inch = 2-54 om.’ is a useful
statement; either symbol, ‘1 inch’ or ‘2-54 cm.’, denotes the same length. In general
theorems this procedure can always be followed. When a particular application to a
measured system is made we naturally give the symbols their actual values in terms of
the measures, which will include a statement of the units; but in the general theory the
unit is irrelevant. The symbols will then be said to stand, not for numbers, but for physical
magnitudes.

The alternative method would be to let the symbols stand for the numbers, but then
confusion can occur, and does, between the relations between measures of the same system
in different units, which are different ways of saying the same thing, and of different
systems in the same units, which say different things. If, however, the numerical values
in terms of special units are used for a and b in ab, their product will be the number in the

* ¢ Elementary’ or ‘Additive’ might be better.
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expression of b in what is usually called the consistent unit for ab. The word germane,
introduced by E. A.Guggenheim, isbetter becauseitisnotinconsistent to measure distances
upward in feet, horizontally in yards, and downward in fathoms; it is merely a nuisance.
With adequate care this method can be used correctly, but it has several disadvantages;
in particular it then leads to placing too much emphasis on the units and too little on the
fundamental physical comparisons without which the units would be useless. It also
suggests many comparisons that are physically meaningless, as we shall see in a moment.

If we use the notion of magnitude and retain the processes of algebra the question will
at once arise, what do we mean by a = 6 and a + 6 if a is a length and 4 & time or a mass?
A meaning could be attached to a + b, though it would be very artificial, but no physical
process will give one toa = 6. Butc/b would have a meaning, being respectively a velocity
or a length per unit mass.

The group of rules (10)-(14) therefore needs modification. Those up to (9) could stand,
though they bring in many additions and subtractions and possibly some multiplications
and divisions that we shall never have occasion to use; but in addition to the three possi-
bilities enumerated in (10) we must admit a fourth, that a and b may not be comparable
and therefore belong to different fields, and their product and ratio may belong to other
fields again. This is a further disadvantage of the use of symbols to denote only the
number stated in & measure, since all numbers are comparable, and the language would not
exhibit the fact that it is meaningless to say that a time is greater than a density. We can
then say also that if @ and b are not comparable, a + b is not a physical magnitude and
addition does not arise, The whole field of physical magnitudes is thus divided into plots.
Magnitudes in the same plot will be comparable, but their product will belong to a
different plot unless at least one of them is & number.

The language needed for physics is therefore not quite the same as ordinary algebra.
Since the latter is self-consistent and the statement that some magnitudes are not com-
parable cuts out some propositions from it and adds no new ones, the language of magni-
tude is also self-consistent. It will be seen that the modification corresponds to the notion
of dimensions. Quantities of different dimensions are not comparable; also some quantities
of the same dimensions are not. For instance, according to one pair of definitions in use,
electric charge and magnetic pole strength have the same dimensions, and they are both
additive magnitudes, but it is meaningless to add them. The field of physical magni-
tudes can be taken to satisfy the laws of algebra, but is classified; comparable quantities
satisfy (10), and are capable of addition at least in calculation; incomparable ones do not.
It should be noticed that failure of addition by a physical process is not confined to in-
comparable magnitudes. For instance, there is no process of combining two substances
of density 1 g./cm.? to give one of density 2 g./em.? Density is not measured directly but
calculated from the additive magnitudes mass and length, and is called a derived magni-
tude. Some quantities can be both additive and derived; thus electric current measured
by its magnetic effect is an additive magnitude, but regarded as the charge passing
per unit time it is derived. Many derived magnitudes are ratios of two magnitudes of the
same dimensions; thus we could regard the shape of a triangle as specified by two ratios,
those of two sides to the third. These ratios are pure numbers and the rules of algebra
can be applied to them without change.*

* A similar treatment was advocated by W. Stroud; for discussion and applications to teaching,
of. Sir J. B. Henderson, Engtneering, 116, 1923, 408-10. )



1-03 ' Real numbers 5

1:03. Real numbers. Most of the present chapter will be already familiar to those
who have studied a good modern book on calculus, and it is not intended to compete with
standard works on pure mathematics. We think, however, that some discussion here is not
out of place, for several reasons. First, the latter works for the most part do not emphasize
why the refined arguments that they give have any relevance to physics, and physicists
therefore tend to believe that they are irrelevant. Secondly, they are liable to be so long
that a physicist can hardly be blamed if he decides that he has not the time to work
through them. Thirdly, the attention to very peculiar functions has led the subject to
be regarded as the pathology of functions. The reply is that every function, except an
absolute constant, is peculiar somewhere, and that by studying where a function is
peculiar we can arrive at constructive results about it that would be very hard to obtain
otherwise. But we are entitled to regard ourselves as general practitioners and to restrict
ourselves to the kinds of peculiarities that occur in physics; rare diseases may be handed
over for treatment to a specialist, in this case a professional pure mathematician.

The nature of the problem was foreshadowed in a theorem of Euclid that the ratio of
the hypotenuse to one side of an isosceles right-angled triangle is not equal to any
rational fraction. Euclid, it must be remembered, made no use of what we should now
call numerical measures of physical magnitudes. When he said that two lines were equal
he meant that one could be placed on the other so that the two ends of one coincided with
the two ends of the other; this is the direct physical comparison and does not require any
numerical description of the lengths. When he said that the square on the hypotenuse
was twice that on a side he meant that it could be cut into pieces and that the pieces could
then be put together so as to make the square on the side twice over. He was working
throughout with the quantities themselves, not with the numbers that we choose to
associate with them in measurement with regard to any special unit. The use of numbers
for this purpose is a choice of a language. What Euclid’s theorem showed was that the
language of rational numbers was incapable of describing simultaneously the lengths of
the side and the hypotenuse of a triangle that could easily be drawn by the rules of his
geometry.

Measurement in terms of a unit is too useful a procedure to be lightly abandoned, and
it could be retained, consistently with Euclid’s theorem, in any of the following ways:
(1) Since an infinite number of pairs of integers z, y can be found such that 2+ y* = 22,
where z is another integer, and so that z/y is as near I as we like, we could suppose that the
sides of a right-angled triangle satisfy 2?+y? = 2% exactly but that z = y is not true
exactly but only within the errors of measurement, and the sides are always exact mul-
tiples of some definite length. (2) We might say that z/y can be exact but z*+y* = 2% is
only approximate. (3) We can say that the language of rational numbers is not enough
for what we need to say, and that we need a fuller language in which z = y and 2* + y* = 2?
can be both said consistently. The last alternative is the one that has been universally
adopted by the admission to arithmetic of irrational numbers. It does not contradict
Euclid’s axioms; the first does, since he assumes that a line can have any length,
and the second contradicts one of their best-known consequences. An experimental
proof that it is right is impossible because either (1) or (2) could be true within the
errors of measurement even if z, y, z were restricted to be integers. But they would
be intolerably complicated, and the adoption of either would require the existence
of an unknown and indeterminable standard of length such that all actual lengths are



