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PREFACE

This is a textbook for a first course in system analysis in electrical engineering and
computer engineering curricula. Prerequisites assumed by the book are integral calcu-
lus, a first course in electric circuits, and a working knowledge of complex algebra.
Neither prior nor concurrent study of differential equations and operational calculus is
required. Chapters 1 to 5 provide all prerequisites for successful study of virtually all
popular undergraduate textbooks on communication, control, power systems, instru-
mentation, and signal processing. These chapters also provide a meaningful intro-
duction to system analysis for those who choose to pursue other areas of study.

The book began in 1975 as a set of notes for a required junior course in system
analysis at North Carolina State University. The course bridges the gap between a
sophomore course in circuits and senior electives in communication, control, instru-
mentation, power systems, and signal processing. This book has been used in various
stages of revision in that course by more than 1500 students and by five different
instructors. Explanations, examples, and problems given in the book have been tested
thoroughly in the classroom.

The aim is to present concepts in a straightforward manner and in logical order
and to illustrate definitions, principles, and procedures with an ample number of
examples. The book contains almost 300 examples, more than 600 figures, and more
than 450 problems. Approximately equal emphasis is placed on drill problems, multi-
step problems that require use of two or more principles, and substantive problems that
require application of principles in realistic settings. A few problems require slight
extensions of concepts developed in the body of the text.

The book stresses what I believe to be the three central ideas in system analysis:
(1) methodology of system analysis is based on representing large systems as
interconnections of simpler subsystems and on representing complicated signals as
combinations of simpler signals; (2) performance of systems usually is described with
reference to outputs for certain test inputs and in terms of a few fundamental properties,
(e.g., realizability, stability, fidelity, and sensitivity to parameter variations); (3) the
objective of system analysis is to determine whether a proposed system will perform

xiii



xiv PREFACE

as intended and, if not, to determine why, so that appropriate modifications can be
made. These ideas are introduced in Chap. 1 and emphasized throughout the remainder
of the book.

The first five chapters treat analog (continuous-time) systems. Chapter 1 describes
elementary signals, elementary systems, block diagrams, and fundamental properties
of systems. Chapter 2 treats time-domain methods (impulse response and convolution)
for linear stationary systems, Chap. 3 treats sinusoidally excited systems, Chap. 4
treats frequency-domain methods (Fourier series and the Fourier integral), and Chap. 5
treats the Laplace transformation (both two-sided and one-sided).

Chapters 6 to 8 treat digital (discrete-time) systems. Chapter 6 describes analog-
to-digital and digital-to-analog conversion, elementary digital systems, and funda-
mental properties of digital systems. Chapter 7 describes time- and frequency-domain
methods for analysis of linear shift-invariant digital systems, and Chap. 8 treats the
z transformation. Chapters 7 and 8 also introduce digital-filter design as a practical
application of principles and techniques of digital system analysis.

Chapter 9, which provides an introduction to simulation and computer-aided
analysis, can be studied in parallel with Chaps. 1 to 8. Section 9-1 provides an intro-
duction to simulation using CSMP. Subsequent sections describe more advanced
applications of simulation and also treat several other topics in computer-aided analy-
sis, including numerical convolution, finding characteristic roots, finding partial-
fraction coefficients, using fast Fourier transforms, and designing digital filters.
Emphasis is on using existing software rather than developing algorithms.

I chose to treat analog and digital systems separately for two reasons: (1) In many
curricula, as in ours, there is only one required course in systems analysis. I have found
it impossible to carry a parallel treatment of analog and digital systems far enough in
one semester to provide much of value to students who do not take a second course
in system analysis. (2) I have found from my experience that pedagogical advantages
of a parallel treatment are more apparent than real. Indeed, a parallel treatment
fosters more confusion than insight; students become so concerned with parallels
between analog and digital systems that they lose sight of more important relations
between time-domain, frequency-domain, and complex-plane descriptions of signals
and systems.

I chose to treat analog systems first for three reasons: (1) Most engineering
applications of digital systems are found in analog systems (e.g., control systems,
telephone networks, sonars, radars, and instrumentation systems). Intelligent design
of digital systems for those applications requires some knowledge of analog systems.
(2) Treating analog systems first makes use of and reinforces material just learned
(in circuits and calculus) — thus reinforcing it before it is forgotten. (3) Students who
take only one course in systems and subsequently specialize in other areas benefit more
from studying differential equations, convolution integrals, the Fourier integral, and the
Laplace transformation than by exposure to analogous discrete-time topics.

A few other comments on content and organization of the book are in order.
State-space methods are omitted entirely because most juniors in electrical engineering
have neither the background, the inclination, nor the need for a meaningful treatment
of those methods. Simple nonlinear systems are treated at an appropriate level. Some
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exposure to nonlinear systems appears essential because virtually every practical
system contains at least one nonlinear element and because study of nonlinear systems
promotes deeper understanding of linearity and of limitations on linear models. Finally,
signals and system parameters are treated throughout as dimensioned quantities. This
makes the subject less abstract, simplifies practical application of principles, promotes
insight, and gives students a powerful method for checking correctness of relations and
reasonableness of numerical results.

1 am truly grateful for the quantity and quality of help and encouragement given
by students, colleagues, staff, reviewers, friends, and family. My wife, Robin, and my
son, Jack, have been understanding beyond belief. My students have given encourage-
ment and much constructive criticism. The present and two past heads of our de-
partment, Nino Masnari, Larry Monteith, and George Hoadley, have provided the best
environment imaginable for me and my project. Larry Monteith, Russell Pimmell, and
Kenneth Williams taught from my notes and made many valuable suggestions. Kenneth
Williams wrote many of the computer programs used to produce figures and verify
examples. He also read the manuscript carefully and eliminated many errors. Sande
Maxim and Nancy Tyson typed many revisions of the manuscript with perfection and
cheerfulness. I appreciate the helpful comments of several competent and conscientious
reviewers, including Don Childers, Steve Director, David Fisher, Syed Nasar, Ronald
Rohrer, Lee Rosenthal, Andy Sage, Ron Schaffer, and Michael Silevitch. I took their
suggestions to heart, and the book is better for it. I also wish to express my thanks to
L. E. Schoonmaker, who was a friend indeed; to Charley Black and Bud Flood, who
taught me a lot; and to Andy Sage, who was an inspiration when inspiration was scarce.
Finally, I owe special thanks to Sy Matthews, whose careful reading and thoughtful
criticism are responsible for much of what is good about the style and pedagogy of
the text.

T. H. Glisson



CONTENTS

Chapter

— et
]
R W =

Chapter 2
2-1
2-2
2-3
2-4

Chapter 3
3-1
3-2
3-3

Preface

Elements of System Analysis

Introduction
Elementary Signals
Elementary Systems
Block Diagrams
Fundamental Concepts
Summary

Problems

Linear Stationary Systems

Definition of a Linear Stationary System
Convolution

Interpretation of Impulse Response

Systems Described by Differential Equations
Summary

Problems

Response to Sinusoidal Excitation

Linear Stationary Systems

Nonlinear Static Systems

Introduction to Frequency-Domain Analysis
Summary

Problems

Xiii

51

51
57
69
76
99
100

109

109
127
138
159
162



X CONTENTS
Chapter 4

4-1
4-2
4-3
4-4
4-5

Chapter 5
5-1
5-2
53
5-4

Chapter 6
6-1
6-2
6-3

Chapter 7
7-1
7-2
7-3
7-4
7-5
7-6

Chapter 8
8-1
8-2
8-3
8-4

Chapter 9

9-1
9-2

Fourier Series, Fourier Integral, and
Fourier Transformation

Fourier Series

Fourier Integral

Fourier Transformation

Frequency-Domain System Analysis
Applications of Frequency-Domain Analysis
Summary

Problems

Laplace Transformation

Definition and Properties of the Laplace Transformation
Application to Lincar Stationary Systems

Interpretation of a System Function

One-Sided Laplace Transformation

Summary

Problems

Digital Signals and Systems

Analog-to-Digital and Digital-to-Analog Conversion
Digital Signals and Systems

Fundamental Concepts

Summary

Problems

Linear Shift-Invariant Digital Systems

Definition of a Linear Shift-Invariant System
Convolution

Interpretation of Delta Response

Systems Described by Difference Equations
Response to Sinusoidal Excitation

Digital Filters

Summary

Problems

z Transformation

Definition and Fundamental Properties
Application to Linear Shift-Invariant Systems
Interpreting a System Function

Design of Recursive Digital Filters by Bilinear Substitution

Summary
Problems

Computer-Aided Analysis and Design

Introduction to Simulation Using CSMP
Linear Stationary Systems

175

175
190
200
222
244
271
274

295

295
305
320
359
372
379

392

394
420
431
440
441

449

449
454
465
470
479
490
504
506

516

517
528
536
557
567
568

576

576
602



9-3
9-4

QUOMmgoOw

Computer-Aided Fourier Analysis
Interactive Computer-Aided Analysis
Summary

Problems

Appendixes

Mathematical Formulas
Fourier Series

Fourier Transformation
Laplace Transformation
z Transformation
Outline of CSMP
References

Index

CONTENTS Xi

616
635
655
656

664

664
670
675
677
679
681
684

685



CHAPTER

ONE
ELEMENTS OF SYSTEM ANALYSIS

The principal ideas introduced in this chapter are definitions of signal and system,
definitions of five important signal models, the concept of a transfer characteristic,
definitions of several important elementary systems, use of block diagrams for de-
scribing systems, and five important properties of systems.

In studying this chapter the reader may find it helpful to think of system analysis
as a generalization (or analog) of circuit analysis. Circuit analysis deals with relations
between voltages and currents. System analysis deals with relations between signals,
which may be voltages, currents, temperatures, pressures, or other physical quantities
that vary with time. Circuits are described by circuit diagrams, which are inter-
connections of idealized circuit elements (resistance, capacitance, inductance, and
sources). Systems are described by block diagrams, which are interconnections of
idealized elementary systems. Objectives of circuit analysis are to obtain and interpret
relations between voltages and currents in an electric circuit. Objectives of system
analysis are to obtain and interpret relations between signals in a system.

1-1 INTRODUCTION

We define signal, system, and system analysis; we discuss objectives of system
analysis; and we describe some conventions regarding dimensions, units, and notation
used in this book.

1-1A Signals and Systems

A signal is a physical (measurable) quantity that varies with time.t Examples are
voltage across terminals of an electric circuit and temperature at a point in space. A
In general, a signal may be a function of time and position, e.g., voltage on a long transmission line.

Also, a signal may be a vector, e.g., electric field strength near an antenna. In this book a signal is a scalar
function of time.



2 INTRODUCTION TO SYSTEM ANALYSIS

signal is represented as a function of time ¢, for example, x(¢). A system is a cause-and-
effect relation between two or more signals. Signals identified as causes are called
inputs or excitations. Signals identified as effects are called outputs or responses. For
example, an audio amplifier can be regarded as a system whose input is voltage across
the phono terminals and whose output is voltage across the speaker terminals.

Systems are represented by block diagrams (Fig. 1-1). The box represents a
system, arrows entering the box represent inputs (excitations), and arrows leaving the
box represent outputs (responses). A mathematical description of the system (of the
relations between inputs and outputs) often is given in the box. For example, an audio
amplifier can be represented as shown in Fig. 1-2. An input (a voltage across
the phono terminals) is denoted by x(¢), the corresponding output (the voltage across
the speaker terminals) is denoted by y(7), and the relation between input and output is
given in the box as y(r) = Kx(r), where K denotes gain of the amplifier.

1-1B System Analysis

System analysis is the separation of systems into components for further study, which
usually consists of examining the influence of one or more components on system
performance. For example, an audio system might be separated into three components,
as shown in Fig. 1-3, where v(z) is motion of the phonograph stylus, w(¢) is voltage at
the phono terminals, x(f) is voltage at the speaker terminals, and y() is pressure at a
point in front of the speaker. Further study might show that the speaker has the poorest
performance of the three components, suggesting that the speaker must be improved or
replaced if performance of the audio system is to be improved.

System analysis plays an essential role in designing systems for communication,
process control, data acquisition and processing, power generation and distribution,
and other applications. Since construction of such systems is costly, it is economically
necessary to have some assurance that a proposed system will perform as intended
before construction is begun. The central problem of system analysis is to determine
whether a proposed system will perform as intended, and if not, why not, so the design
can be corrected.

Performance of a system usually is specified in terms of the output of the system
for one or more test inputs. Consequently, the problem of system analysis as described
above has two parts: (1) calculating the output of a system for one or more test inputs
and (2), more important, interpreting the result of that calculation in terms of
performance of the system. Test inputs used for specifying performance of systems
are described in Sec. 1-2. Properties referred to in describing performance of Sys-
tems are described in Sec. 1-5.

xy(t) —] »it)
xAt) =™ System [T ¥20)
X (1) — —> yar(t) x(1) y(1)

—_— y(t) = Kx(1)

Figure 1-1 Block diagram for a system having
inputs  x;(¢),x(t),...,xx(t) and outputs
Vi), y2(t), ..., yu(2). Figure 1-2 Block diagram for an audio amplifier.
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x(1) ya)

t
A | Phono W) Amplifier ——{ Speaker +——

cartridge

Figure 1-3 Block diagram for an
audio system.

1-1C Dimensions, Units, and Notation

A signal is a measurable quantity. A signal has a dimension and is specified at any
instant by a number and a unir. Otherwise, it may be impossible to use the signal in
a meaningful calculation. For example, suppose we are told that the signal at the
terminals of a loudspeaker is 5 cos wr. What, exactly, have we been told? Not much;
we do not know whether the signal is voltage, current, or gravitational field strength
and we cannot, for example, calculate power delivered to the speaker even if we know
the impedance of the speaker.

System parameters also are usually dimensioned quantities specified by a number
and a unit. For example, the parameter K of a system whose output y(t) for input x(7)
is given by y(f) = Kx(#) must be expressed in the unit of y(£)/x(1).

Dimensions and units are more than just extra baggage that must be carried along
in order to get meaningful results. They provide powerful checks on correctness of
relations and reasonableness of numerical values. A relation that is dimensionally
incorrect is incorrect, period. A calculated current of 10° amperes through a loud-
speaker is unreasonable, indicating that an error has been made in the calculation.

The SI systemt of units is used in this book. Dimensions, SI units, and prefixes
used in this book are given in Tables 1-1 and 1-2. Consistent use of certain symbols
is helpful to students and practicing engineers alike. In this book we abide by certain
conventions insofar as possible and reasonable. These conventions are pointed out
where the need for them arises.

The abbreviation SI is for the French Systéme Internationale d'Unités. An excellent discussion of
dimensions and units is given in Kraus and Carver, chap. 1 and app. A-1. (References are listed in
Appendix G.)

Table 1-1 Dimensions and SI units

Symbol Symbol
Dimension or for SI Dimension or for SI
quantity Name of S unit  unit quantity Name of SI unit unit
Acceleration meter/second’ m/s? Inductance henry H
Angle radian rad Lengtht meter m
Angular frequency radian/second rad/s Masst kilogram kg
Angular acceleration  radian/second? rad/s’ Moment (torque) newton-meter Nm
Capacitance farad F Power watt w
Charge coulomb C Pressure newton/meter’ N/m?
Currentt ampere A Resistance ohm Q
Energy (work) joule J Temperature Kelvin K
Frequency hertz Hz Time? second s
Force newton N Velocity meter/second m/s
Impedance ohm Q Voltage volt v

tFundamental unit in SI system.
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Table 1-2 Some SI prefixes

Prefix Abbreviation Magnitude
giga G 10°

mega M 10°

kilo k 10°

milli m 1073
micro m 10°¢

nano n 107°

pico p 1072

1-2 ELEMENTARY SIGNALS

In this section we define signal models for a step, a rectangular pulse, an impulse, a
sinusoid, and an exponential pulse. These five elementary signals, particularly the step
and the sinusoid, are used widely as test inputs for specifying system performance.
They are also used in mathematical descriptions of more complicated signals.

1-2A Step
The unit step function is denoted by u(a) and defined byt

0 a=0

1 a>0 a-h

ula) = {

Figure 1-4 shows a graph of u(a) versus a. The step signal of Fig. 1-5 is described by

TThe unit step function u(a) often is defined to be unity for & = 0 and sometimes is defined to be }
for a = 0. We prefer u(a) = 0 because this simplifics using step functions to describe signals that change
abruptly (but continuously) in response to an event that occurs at a specified time, e.g., closing a switch at
t=0.

u(e)

0 “  Figure 1-4 Unit step function.

x(t) = xqu(r)

X0

0 ¢ Figure 1-5 Step signal.
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x(t) = xou(t) (1-2)

where ¢ is time and x, is the amplitude of the step. Time ¢ may be expressed in any
convenient unit because the value of u(z) depends only on whether ¢ is positive or not.
Amplitude x, is expressed in the unit of x(z).

Example 1-1 In the circuit of Fig. 1-6 the switch is moved from contact A to contact B at
t = 0. The voltage v(?) is given by

v(r) = voulr)

where v, = 5 V.

e

v(t)

O - Figure 1-6 Circuit of Example 1-1.

1-2B Rectangular Pulse
The rectangular function is denoted by r(a) and defined by

r(a)—{l 0<a=l (1-3)
0 otherwise

Figure 1-7 shows a graph of r(a) versus a. The rectangular pulse of Fig. 1-8 is
described by

x(t) = xore) (1-4)

where x, is the amplitude of the pulse and 7 is the duration of the pulse. The unit of
Xo is the unit of x(¢), and the unit of 7 is the unit of r.

r(a)
x(1) = xor(L)

| — Xo f————

' |
{ |

|
l |
' |
' |
l T

a 0

Figure 1-7 Rectangular function. Figure 1-8 Rectangular pulse.
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Example 1-2 In the circuit of Fig. 1-6 the switch is moved from contact A to contact B at
t = 0 and from contact B back to contact A at + = 10 us. The voltage v(¢) is given by

v(r) = W(é)

where vo = 5 V and 7 = 10 us.

1-2C Impulse
The delta functiont is denoted by 8(a) and definedi by

du(a)

“da (1-3)

6(a) =
where u(a) is the unit step function. The step function u(a) is dimensionless, and the
operator d/da has the dimension of a™'; consequently the delta function 6(a) has the
dimension of a™'.

The two most important properties of the delta function are expressed by the

relations

é6(a) = 0, a#*0 (1-6)
and J 8a)da = 1 1-7

Equation (1-6) follows from (1-5) because the derivative (the slope) of the unit step
function u(a) is zero except for « = 0. Equation (1-7) is derived from (1-5) as follows:

f S(a)da = f dlu(a)] = u(e) — u(-») =1 -0 =1

According to (1-6) and (1-7), the delta function is nonzero at only a single point
(o = 0), yet it has unit area. This peculiar property will become more understandable
in applications. For now, it is sufficient to think of the delta function as a spike having
nearly zero width, nearly infinite amplitude, and unit area. The delta function is
represented graphically by an arrow, as shown in Fig. 1-9.

An impulse x(t) is described by

x(1) = ad(r) (1-8)

and is represented graphically as shown in Fig. 1-10. The quantity a in (1-8) is called
the strength of the impulse x(f). The unit of & (¢) is that of +'. The unit of strength a
is that of £x(z). For example, if x(7) is voltage in volts and 7 is time in milliseconds, the
appropriate unit for a is volt-milliseconds (Vms). The strength a is nor the amplitude
(height) of the impulse x(¢); it is the area bounded by the impulse and the time axis
because, from (1-7),

T Also called the dirac delta, after the English physicist P. A. M. Dirac (1902 ), and the unit impulse.
We reserve the term “impulse” for a signal whose amplitude is given by a delta function of time 1 [see (1-8)].
4This definition has been known to cause apoplexy in mathematicians. Nonetheless, its consequences
are consistent with those of a rigorous treatment, and it allows us to avoid a great deal of tedious mathematics.
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() ad(r)
: 4 !
0 ¢ 0
Figure 1-9 Graphical representation of a delta Figure 1-10 Graphical representation of an im-
function. pulse.
f ads(t)ydt = af 8(r)dt = a (1-9)

Example 1-3 A billiard ball at rest is struck by a cue ball whose momentum before the
collision is po. After the collision the cue ball is at rest. Describe the force on the cue ball
as a function of time.

SoLUTION We assume that the collision is instantaneous and that it occurs at ¢ = 0. The
momentum of the cue ball is given by

p(t) = po[1 = u()]
By Newton’s law? the force on the cue ball is given by

_dp() _
fo(t) = i Pod(t)

Note that this result is dimensionally correct because the dimension of momentum Do is
force X time and the dimension of 8(¢) is time™"

1-2D Sinusoid
The sinusoidal signal of Fig. 1-11 is described by

2t
x(t) = x, cos - (1-10)

tForce is rate of change of momentum; thus f = dp/dt, where fis force, p is momentum, and ¢ is time.
Forp = mv, where m is a fixed mass and v is velocity, the relation f = dp/dt becomes the familiar f = ma,
where a is acceleration.

x(1)

T

Figure 1-11 Sinusoidal signal described by (1-10).
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where x, [unit of x(¢)] is the peak amplitude of the sinusoid and T (unit of ?) is the period

of the sinusoid. '
In engineering a sinusoid usually is described in terms of frequency f, defined by

1

f== (1-11)

or in terms of angular frequency w, defined by

27
w=27f= T (1-12)
Thus, the sinusoid of (1-10) is described by

x(1) = x, cos 27 ft (1-13)
or by x(t) = xo cos wt (1-14)

The SI unit of frequency fis the hertz (Hz), with 1 Hz = 1 s™'. The SI unit of angular
frequency w is the radian per second with 27 rad/s = 1 Hz.

Example 1-4 The sinusoid of Fig. 1-12 is described by
i(t) = ip cos 27 ft
where f = 1/0.002 = 500 Hz and i, = 50 mA.

i(t), mA
50

/IN N
JSAN N\ T

Figure 1-12 Sinusoidal signal of Example 1-4.

1-2E Exponential Pulse
The exponential pulse of Fig. 1-13 is described by
x(t) = xee”"u(t) (1-15)

The quantity x, [unit of x(¢)] is called the initial amplitude of the pulse. It is the
amplitude of the exponential for + = 0*.1 The quantity  (unit of t) is called the time
constant of the exponential. In any interval of duration nr the amplitude of the ex-
ponential pulse of (1-15) decreases by the factor e™"; that is,

x(t + n7) = e7"x(r) (1-16)

1The symbol 0* (07) denotes a very small positive (negative) time; thus x(07) is the value of x(1)
immediately after t = 0.



