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THE CHARACTERIZATION OF SYNTHETIC QUARTZ BY USING INFRA-RED ABSORPTION

J.C. Brice and A.M. Cole

Philips Research Laboratories,
Redhill, Surrey, RH1 5HA, England

Summary

Samples of quartz obtained over several years
from 12 suppliers have been examined. Hydrogen
is found to be the major impurity. Infra-red
measurements show that there are linear relations
between the absorption due to_ hydrogen at 3585,
3500, 3410, 3300 and 3200 cm™l. A consideration
of the intrinsic and practical problems of using
each of these absorptions suggests that it is
advantageous to use the absorption at 3410 cm™!
and ‘a simple reciprocal relation between Q and the
appropriately corrected extinction coefficient is
suggested.

Measurements of infra-red Q at various
positions in a crystal show that significant
changes only occur in general due to changing the
position of the measured sample in the Z direction.
These changes become large as the average Q falls.
Similarly comparing the mean Q's of crystals from
one batch shows that deviations from the batch
mean increase as the batch mean falls. It is also
shown that there is an inverse correlation between
dislocation density and Q.

Introduction

The electromechanical Q of a quartz crystal is
a useful guide to its suitability for various
applications._  Because high Q material must be
grown slowly ™%, it is expensive and should not be
used unnecessarily. Direct measurements of Q are
difficult to make. Thus a simple indirect method
of measurement is needed. Dodd and Fraser -
showed that there is a good correlation between
electromechanical Q and infra-red absorption and
this method is ngw used by most workers in the
field. Sawyer ° showed that the relation took
the form

et =l +aa e Ba? e}

where a is the extinction coefficient. Strictly,
a is defined so that the fractional intensity of
light transmitted through a parallel sided sample
of thickness t is

2 . .—at
. (1 -R)"10
x 2 L .=2at @)

1 - R" 10

where R is the reflection coefficient of the
sample surfaces and the denominator allows for the

effect of multiple internal reflections. For
quartz in the near infra-red, R is about 4% so
that the term RZ 10729t hag a maximum value of less
than 2 x 10™3 and can be neglected. However a
reliable estimate of a still required measurements
to be made on samples with different thicknesses.
This was done by Lias et al 4 but other workers
6-10 compare measurements at two wave numbers, one
of which is chosen to have negligible absorption
but essentially the same reflection coefficient as
the frequency of interest. Then

inylle @

a = [logq (T ¢
where T . is the transmitted intensity at the
reference wave number (usually 3800 or 3900 cm'l)
and T, is the transmission at the wavenumber of
interest. Table 1 summarizes the data in the
literature in terms of coefficients in equation (1).
Lias et al ° give data which relates a and hydroxyl
content. At 3500 cml they find that a = 1 cm~l
corresponds to 4800 ppm H measured relative to
silicon. Sawyer 6 suggests a figure of 6000 ppm
(em~1)-1,

This paper compares results obtained at the
various wavenumbers sensitive to the presence of
OH and shows that there are significant effects
due to finite absorption independent of the
hydroxyl content and that apparatus parameters
(resolving power and polarization) can appreciably
alter the results obtained. From the results
obtained it is also shown that the variations of
Q within a crystal and between crystals in a batch
both increase as Q falls and that there seems to
be an inverse correlation between Q and dislocation
density.

Experimental

Samples were cut from crystals with Y-bar or
Y-plate seeds obtained over a six year period from
12 suppliers (3 in the USA, 4 in Europe, 2 in
Japan and one each in Russia, China and South
America). From each supplier we obtained as many
grades of material as possible. Thus the samples
should be a representative selection of materials
grown from various raw materials with a reasonable
range of growth parameters. Table 2 gives the
impurity contents found and shows that hydrogen is
always the major impurity on an atomic basis.  The
only other significant trends observed were that
high Q crystals tended to have less of all the
impurities than low Q crystalx (the upper quartile



data are typical of crystals with a Q of about

1 x 106 and the lower quartile figures are

typical of samples with a Q of 2 x 10”). Note also
the effect of mineralizer on carbon content.

The samples for infra-red measurements were
usually plates with faces including the X and 2
axes and the radiation was propagated parallel to
Y. The samples were polished usually finishing
with Syton but for some samples we used cerirouge.
If these samples were repolished on Syton, no
significant differences were seen optically but
double crystal reflection topographs showed that
the cerirouge finish left some surface strains.

The measurements were made at room temperature
(20 * 5°C) generally using a Perkin-Elmer 337
double beam spectrometer. The beam size was
stopped down to 5mm diameter. Because of the use
of a reflecting optical system the radiation was
polarized so that about 70% of-the electric vector
lay in a horizontal plane. We measured the
crystals with the optic axis horizontal and
vertical and deduced values of respectively o
and o) as discussed later. The symbol o is used
to imply the mean of these measurements.
Similarly T implies the mean of the two transmitted
intensities. Comparing our results with those
obtained on the same samples with 3 other spectro-
meters showed that in genmeral the T values agreed
to within ¥ 0.5% and results were reproducible to
about 0.27. Thus we believe that our measure-
ments of the product at (equation 3) are accurate
to ¥ 0.005, i.e. for a 10mm thick sample we can
measure a to ¥ 0.005 cm . The only exception to
this was the measurement of “358;' For this
parameter we found that the resolving power of the
instrument was important. Other spectrometers
with resolving powers of about 4 cm™ - like ours
gave the same result but instruments with better
resolving power (< 1.5 em™ ") gave values which
were higher by 15Z on average. Thus for this
line instrument resolving power is important.
Other workers find the same effect. Thus due to
a change in resolving power the calibration curves
given in references 9 and 10 differ by a factor 2.

We measured plates between 1 and 20 mm thick
but discarded results on plates less than 7 mm
thick except for measurements of absolute
absorption. We also discarded measurements on
crystals which reflection topographs showed to be
highly strained. These crystals could have
values of ajjiay which were radically different
from the average e.g. 2.

Attention was concentrated on the Z growth
zone and only these results are discussed in the
next section. Values of a in the +X zone were
usually larger than in the Z zone. This would be
expected from the greater segregation coefficients
(see reference 11 for a discussion of this).

Results and Discussion

Figure 1 shows the general features of the
transmission spectrum of a typical sample. The
two curves are for the same area but the upper

curve is T; and the lower curve is Tl s Kats 12

observed a similar sensitivity to polarization.

His results taken at a temperature of 78K with 1007
polarization show larger ratios than our data for
about 300K with 707 polarization, see Table 3,
which indicates that polarization effects can be
significant.

Most workers use absorption at 3500 em! as a
measure of the quality of the crystals. Kats 1
has shown that much of the absorption in the near
infra-red is due to hydrogen. Thus the lines at
3517, 3510 and 3485 are associated with hydrogen
alone and the lines at 3513, 3510 and 3500 are
associated with hydrogen and Na, Li and Ag
respectively. Figure 1 shows that the absorption
changes rapidly with wavenumber in this region.
Typically a 1 em™l change in wave number changes a
by 17. Few spectrometers are reproducibly accurate
to more than a few cm~l so that errors of a few per
cent can occur from using this absorption. A self
locating line is therefore desirable but as was
shown in the last section the line at 3585 cm™! is
so narrow that the result obtained depends to a
large extent on the instrument resolving power.
Kats 12 shows that this line is associated with H
alone or_H + K. The absorptions at 3410, 3300 and
3200 cm ' are similarly associated with hydrogen
with possible components due to hydrogen plus Na,
Ag, Li and Cu. Kats 12 ghows that there are
lattice absorptions at 3396, 3300, 3220 and 3204
em~! and the half widths of these absorptions are
typically 20 cm~! so that a combined H and lattice
effect is likely to be seen. However the lines at
3410, 3300 and 3200 cm™! are easily located and the
line at 3410 is very broad and therefore easy to
locate and measure with any spectrometer.

Figure 2 gives data conparin% a3410 With ajsgo
which from the published data 25 I3 geems to be
linearly proportional to hydroxyl content. (The
value of 03585 is_similarly linearly related to
hydroxyl content 13y, The average data spread on
Figure 2 is .77 about the line

%310 = 0.050 + 1.2503500 (4).
This data spread is expected on the basis of
experimental errors. Similarly we find that with
spreads of ¥ 8% the other relative extinction
coefficients (equation 3) can be given by

%3300 = 0.125 + 0.80u3500 (5)

and

%3900 = 0.110 + 0.6003500
Our measurements of a3585:a3500 show that the
average value is 1.03 * 0.08. It is possible that
the ratio is slightly dependent on a. We find a
ratio of 0.97 * 0.05 for a < 0.1 cm™! and 1.07 %
0.05 for a > 0.1 em~l. These differences are
probably due to the resolving power effect already
discussed. The uncertainties quoted in all these
instances are spreads of the data points.
Uncertainties in the mean values are much less.

(6).

In general our data show that for unstrained



samples there is little variation in the trams-—
mission of any sample in the range 4000 to 3760
cm1, (Badly strained samples show reproducible
variations in this range.) However we did observe
that the values of T varied with thickness from
about 83 to 94%Z. Figure 3 plots the average
values as a function of sample thickness. The
slope of the line on this figure suggests an
intrinsic extinction coefficient of 0.025 ¥ 0.002
em~! in this range. Kats 12 suggests that there
may be lattice absorptionms. If this is the case
then the relative extinction coefficients
(equation 3) will be smaller tham the absolute
ones (equation 2) and to convert from relative

to absolute we must add 0.025 cm ~. If this is

done, equations (4) to (6) become
%3410 0.044 + 1.2503500 (¢)]
%3300 = 0.130 + 0.8003500 (8)
and %3000 = 0.120 + 0.60u3500 )

Thus the intrinsic lattice absorptions at these
frequencies correspond to absolute extinction
coefficients of 0.044, 0.120 and 0.110 em™l., To
obtain the hydroxyl related extinction coefficient
from a relative one we must allow both for these
absorptions and the intrinsic absorption at the
reference frequency. Thus we add 0.025 cm™l at
3500 and 3585 cm™l and subtract 0.019, 0.105 and
0.095 cm~l at 3410, 3300 and 3200 -l respgctively.
Values treated in this way are denoted by a .
Figure 4 shows a plot of Q against o* using
the published data. It can be seen that for
3500 cm ! the data are well represented by

5, *
Q C x 10 /03500

where C = 1.35. The spread is that expected from
experimental errors. The Toyo data for 3585 em L
seem to be well represented by the same equation
but from our measurements we expect C3sgs = 1.39
or for a spectrometer with a resolving power of
better than 1.5 cm~1, C35g5 should be 1.60.
Similarly at the other wavenumbers we can derive
values of C from equations (7) to (9) which are
C3410 = 1.69, C3390 = 1.08 and C3ppg = 0.81. In
practice only the absorption at 3410 cm™l offers
any appreciable advantage and we recommend the use
of this line and the relation

(10)

*
3410 an

There seems little doubt that a relation like (10)
or (11) can be used with at least the same degree
of confidence as any of the relations given in
Table 1.

= 1,69 x 105/u

Now that we have a measurement technique,
there is still a sampling problem: one measurement
of Q does not characterize a crystal and measure-
ments on one crystal do not characterize a batch
grown in the same autoclave at the same time.
Looking first at the variations in one crystal, we
find that moving the beam in the X direction does
not change a significantly unless there is a sub-

boundary (Figure 5) and such regions give large
polarization effects: ajj:q) ratios of 1.5 or even
2, Similarly, if we measure another slice from
the same crystal and make our measurement at the
same distance from the seed, the changes are barely
significant 15% for a Q of 1.0 x 10%, 102 for a Q
of 1.5 x 10% and perhaps 5% for a Q of 2.5 x 106.
However when the beam is moved parallel to the Z
axis large changgg occur. Figure 6 shows the
average change Aa" obtained by moving a 5mm
diameter beam in the Z direction by Smm. The
value of a decreases by an amount Aa" on moving
outwards. The figure gives the mean value of Aa
as a function of the average of the two measured
values of o¥, For most purposes the values of
Ba* and o probably characterize the crystal
adequately. If we now examine the variations
within a batch of Q deduced from o* we find the
relation shown on Figure 7. The values obtained
for batches with the same mean Q are surprisingly
constant. The standard error of the standard
deviation is only about 20Z. Thus we can use
Figure 7 to deduce confidence limits based on
measurements of a relatively small sample of
crystals from one batch.

Because we had topographs of samples from
crystals with known Q we could correlate disloca-
tion densities with Q as shown on Figure 8. On
this figure, open circles are median values and
the filled circles and triangles represent
respectively the maximum and minimum values found
in batches of 8 to 12 samples. Thus it appears
that a Q specification also fixes the likely range
of dislocation densities. A relation between
dislocation density and Q or g is reasonable on
the model proposed by Griggs who suggests that
dislocations are surrounded by a cloud of hydroxyl
ions and Ayensu and Ashbee 15 have proposed that
dislocation movement requires OH ions. (Disloca-
tion generation requires dislocation movement.)

Conclusions

This paper has shown that infra-red measure-
ments can be used to characterize quartz. In
order to obtain reasonable accuracy a relatively
thick sample must be examined: for measurement of
high Q's a sample 10mm or more thick must be used.
Account must be taken of polarization effects and
intrinsic absorptions but if these are treated
correctly a simple reciprocal relation gives Q.

It is specifically recommended that when comparable
results are required from different instruments

the absorption at 3410 cml should be used.
Absorption at this wave number has the following
advantages:

(a) It shows the maximum sensitivity to hydroxyl
concentration.

(b) The line is easily located.

(c) The line is broad so that no problems are
experienced with resolution or instrument
calibration.

(d) The correction needed to convert relative
extinction to absolute extinction due to
hydroxyl is the smallest of any line considered.



(e) The polarization effect is small.

It is also necessary to measure at more than one
location relative to the seed. If all these
factors are taken into account then a batch can be
characterized by measurements on a relatively few
specimens. The polarization effect can be used to
detect strained crystals and it appears that a
measurement of Q fixes the range of dislocation
densities likely to be found.
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Figure 1. The transmission spectrum of a 20mm thick sample. The full
line is obtained when the major part of the electric vector
is parallel to Z. The broken line is the result obtained
with the sample rotated 90° about Y.
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Figure 5. A double reflection X-ray topograph showing a "sub-boundary"

in the Z zone.
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