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Preface

This book consists of mathematical and algorithmic studies of geometry of polyhedral
surfaces based on the variations principles. The part of mathematics is based on a lecture
series given by Feng Luo at the Center of Mathematical sciences at Zhejiang Univer-
sity, China, in June and July 2006. The algorithmic theory and applications to computer
graphic are based on the work of Xianfeng Gu and are written by him. The task of writing
the part of mathematics of the note was done by Junfei Dai who prepared them with great
care and made a number of improvements in the exposition.

The aim of this book is to introduce to the students and researchers an emerging
field of polyhedral surface geometry and computer graphics based on variation princi-
ples. These variational principles are derived from the derivatives of the cosine law for
triangles. From mathematical point of view, one of the most fascinating identity in low-
dimensional polyhedral geometry is the Schlaefli formula. It relates in a simple and el-
egant to way the volume, edge lengths and dihedral angles of tetrahedra in the spheres
and hyperbolic spaces in dimension 3. The formula can be considered as a foundation of
3-dimensional variational principles for triangulated objects. For a long time, mathemati-
cians have been considering the Gauss-Bonnet formula as the 2-dimensional counterpart
of Schlaefli. The recent breakthrough in this area was due to the work of Colin de Verdiere
in 1995 who found the first 2-dimensional identity relating edge lengths and inner angles
similar to the Schlaefli identity. The mathematical work produced in this book can be
considered as establishing all 2-dimensional counterparts of Schaefli formula. It turns out
there are continuous families of Schlaefli type identities in dimension 2. These identi-
ties produce many interesting variational principles for polyhedral surfaces. In the part
of mathematics of the book, we are focusing on a study of the rigidity phenomena on
polyhedral surfaces. Some moduli space problems are also discussed in the book.

In the part of algorithm of the book, we introduce discrete curvature flow from both
theoretical and practical points of view. Discrete curvature flow is a powerful tool for
designing metrics by prescribed curvatures. The algorithm maps general surfaces with ar-
bitrary topologies to three canonical spaces. Therefore, all geometric problems of surfaces
in 3D space are converted to 2D ones. This greatly improves the efficiency and accuracy
for engineering applications. The discrete Ricci flow algorithm, and Ricci energy opti-
mization algorithm are rigorous, robust, flexible and efficient. They have been applied for
surface matching, registration, shape classification, shape analysis and many fundamental
applications in practice.

This book is written for senior undergraduate students and graduate students majoring
in mathematics or computer science. The mathematical requirements to follow the proofs
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in the book are some basic knowledge of differential geometry and elementary surface
topology. We have not stated and proved theorems in the book in the most general form
to avoid the technical details. For computer science majors with basic knowledge in data
structure and algorithm, all the algorithms in the book can be implemented straightfor-
wardly by following the pseudo codes and the software system can be built step by step
from scratch. Some data sets and source code are also available upon request.

This book should be valuable for researchers in surface geometry, computer graph-
ics, computer vision, geometric modelling, visualization, medical imaging and scientific
computation fields. The computational algorithms are also useful for geometric modelers,
industrial products designer, digital artists, animators, game developers and anyone who
needs digital geometry processing tools.

We owe much to many colleagues and friends with whom we have discussed the sub-
ject matter over the years. The first author would like to thank Ben Chow who introduced
him the wonderful world of discrete curvature flows and the Ricci flow. The second au-
thor is very grateful to all professors in the Center of Visual Computing at Stony Brook:
Arie Kaufman, Hong Qin, Dimitris Samaras, Klaus Mueller and all faculty members in
the Computer Science department in Stony Brook University. The second author deeply
appreciate the encouragements and valuable advices from Professor Shing-Tung Yau.

The authors thank National Science Foundation of USA for supporting our collabora-
tive research on discrete curvature flow.

Last but not least, we also want to thank our families, without their supports, this book
could not be accomplished.

Piscataway, New Jersey, Feng Luo
Stony Brook, New York, Xianfeng David Gu
Hangzhou, China, Junfei Dai

Summer 2007
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Introduction

1.1 Variational Principle and Isoperimetric Problems

The variational approach to characterize a geometric object is to find among geometric
shapes of similar properties the one with the least measurement (the least energy). Let us
illustrate this theme by the famous isoperimetric problem which asks for a characteriza-
tion of the circle among all piecewise smooth non-self intersecting loops in the plane. Let
y:8' — Cor y: [0,2n] — C be a piecewise smooth embedding so that y(0) = y(2x).
Then the length /{7y) of v and the area A(y) enclosed by y are given by

=[Oy

A(y) = //dedy = }ixdy = /Ohx(t)y'(t)dt

where y(t) = (x(¢),y(¢)) and Q is the Jordan domain enclosed by y. Define the energy of
¥, denoted by E(y), by
E(y) = P/A.

Then the isoperimetric inequality (see [Cha] for a proof) states that
E(y) > 4n’p?/np® = 4n°

with equality if only if ¥ is a round circle.

The variational principle says that circles are the minimizers of energy E among all
piecewise smooth Jordan curves. Technically, the difficult part is to prove the existence of
minimizes. As long as one knows the existence, it is not hard to see that the minimizer has
to be a circle. Indeed, both length ! and area A are invariant under rigid motion. It follows
that minimizer has to have the rotational symmetry. Thus, it must be a circle.

A counterpart of the isoperimetric problem is that the regular n-sided polygons (or n-
gons) are the E(y) energy minimizer among all n-gons. This was first proved by Steinitz.
The argument is elementary and elegant. First, due to the finite dimensionality, one can
show that the energy minirnizer exists. Next, one shows that the minimizer must be convex
due to the reflection operation which increases the energy (see Fig. 1.1).

It is known that among all triangles of area 1 with the same base, the isosceles triangle
has the smallest circum length (see Fig. 1.2). Using this fact to the minimizer, one sees
that the edge lengths of the minimizer must be the same. Finally, Steinitz showed that the
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Fig. 1.2.

minimizer must be regular by establishing the fact that among the quadrilaterals of area
1 with the same base, the trapezoid of the same top two angles has the smallest circum-
length.

The Steinitz’s solution above is an example of variational principle on triangulated
1-manifolds.

The main mathematical goal of our study in this book is to consider the 2-dimensional
analogous of the Steinitz’s solution. We will consider triangulated surfaces and construct
the associated energy functions. Among the main results obtained in this work is the com-
plete list of all possible energy functions of localized nature for 2-dimensional variational
principles on triangulated surfaces.

1.2 Polyhedral Metrics and Polyhedral Surfaces

Take a finite set of points in the Euclidean 3-space E3 and the convex hull of these points,
we obtain a convex polytope whose vertices are among the given finite set. If the points
are generic, then the convex polytope has triangle faces. In this case, the boundary surface
is a polyhedral surface. It has two properties. Firstly the surface is triangulated, secondly,
the induced metric on the surface is locally flat except at the vertices. Recall that a tri-
angulation of a surface is defined as follows. Take a finite collection of disjoint triangles
and identify all pairs of edges by homeomorphisms. The quotient space is a surface with
a triangulation whose cells are the quotients of triangles, edges and vertices in the disjoint
union.

Definition 1.1. An Euclidean polyhedral surface is a triple (S,T,d) where S is a closed
surface, T is a triangulation of S and d is a metric on S whose restriction to each triangle
is isometric to an Euclidean triangle. We will call the metric d a polyhedral metric. The
discrete curvature ko of (S,T,d) is a function which assigns each vertex 2T less the sum
of inner angles at the vertex, ie.,

ko(v) =21 — i o,
i=1

where 0.1, ..., Oy are the inner angles (of triangles) at the vertex v.
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We will also call above an E? polyhedral surface. If we use the spherical (or hy-
perbolic) triangles instead of Euclidean triangles in Definition 1.1, the result is called a
spherical (or S?) polyhedral surface (resp. H? polyhedral surface). Spherical and hyper-
bolic polyhedral surfaces will be covered extensively in this book. It is due to the fact
the S? and H? polyhedral surfaces constitute generic phenomena in polyhedral geometry
so that Euclidean ones are the limiting cases. The discrete curvature &g is defined by the
same formula for S? and H? polyhedral surfaces.

For a triangulated surface (S,T), we use E = E(T) and V = V(T) to denote respec-
tively the sets of all edges and vertices of the triangulation. A polyhedral metric d on
(S,T) is determined by specifying the lengths of edges, i.e., by the edge length function
ly : E — R-g. In the sequel, we will identify a polyhedral metric d with its edge length
function. In particular, we say two polyhedral metrics d,d’, are equivalent if they have the
same edge length function, i.e., I = [p.

From the definition, it is clear that the basic unit of discrete curvature is the inner
angle. Furthermore, the metric-curvature relation is given by the cosine law.

Just like the smooth case, one of the main problem of study in polyhedral surface is to
understand the relationship between the metric and curvature. Naturally we should study
the cosine law carefully.

1.3 A Brief History on Geometry of Polyhedral Surface

The study of polyhedral geometry has a long history. The Greeks were able to find the five
regular polytopes in [E* long time ago. Modern developments started with Euler’s famous
theorem concerning the number of vertices, edges and faces of convex polytopes in 3.
Additional ideas and results came form Legendre, Cauchy, Steiner, Sylvester, Cayley,
Moébius, Schlafli, Tait, Minkovski, Steinitz, and others.

We just mention a few remarkable theorems concerning rigidity and existence of the
convex polyhedral surfaces here.

Theorem 1.2 (Cauchy, 1813). Suppose P,Q are two compact convex polytopes in E3 so
that there exists an isometry [ : dP — dQ between their boundary surfaces preserving
vertices, edges and facess. Then P and Q differ by a rigid motion of E*.

Cauchy’s original proof contained a gap which was fixed by Steinitz. A 3-connected
graph is a graph with the property that if one removes any two vertices, the remaining
subgraph is still connected.

Theorem 1.3 (Steinitz, 1917). ({Grul) For any 3-connected graph G in the 2-sphere s?,
there exists a compact convex polytope P in B3 whose edge graph is isomorphism to G by
a homeomorphism from P to S*.

A very important problem is to understand the space of all compact convex polytopes
with combinatorics G. This is called the realization space. Steinitz proved that the space
is connected. Conjecturally the space should be a cell.

Theorem 1.4 (Aleksandrov, 1942). If (§2,7,d) is a Euclidean polyhedral surface with
curvature ko > 0, then there exists a compact convex polytope in E*> whose boundary is
isometric to (82, d).
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Furthermore, the convex polytope in Aleksandrov’s theorem is unique up to isome-
try of E3. Note, the uniqueness does not follow directly from Cauchy’s rigidity theorem
which assumes that boundary isometry preserves combinators. The most general rigidity
theorem was established by Aleksandrov and Pogorelov.

Theorem 1.5 (Aleksandrov and Pogorelov, 1948). If P and Q are two compact convex
bodies in B3 so that their boundaries are isometric, they differ by a rigid motion of E3.

Combining Aleksandrov realization theorem and the rigidity theorem, one sees that
for a polyhedral surface (82,T,d) of non-negation discrete curvature ko > 0, there exists
a natural cell decomposition 77 of $2 coming from the convex polytope realization. On
the other hand, for the singular flat metric (S2,d), there exists a natural Delaunay cell-
decomposition T, of §2. It is known that 77 and 7 may be different. It is conjecture that
T, and T» differ by a bounded number of flips which is linear in the number of vertices
in Ty (or T) (see Fig. 1.3). To be more precise, let N be the number of vertices in 77. By
adding diagonals to non-triangular faces of 71 and 75 (without introducing extra vertices),
we obtain two triangulations 71 and 72 Conjecturally, 77 and fz differ by a finite number
of flip operations so that the number of flips is linear in N.

Fig. 1.3.

1.4 Recent Works on Polyhedral Surfaces

The recent insurgent of interests on polyhedral surfaces is mainly due to the work of
William Thurston on geometrization of 3-manifolds. Recall that a polyhedral metric
(S,T,d) is called a circle packing metric if there exists a positive function 7 : V — R so
that the edge length I of an edge uv with end points u and v is given by

Ly(u,v) = r(u) +r(v).

For instance a triangle Avjvovs in T is realized by an Euclidean triangle of edge
lengths r1 +rp,r2+r3,r3+r1. Geometrically, the vertices v, v, v3 are the centers of three
pairwise tangent circles of radiu r1,72 and r3 (see Fig. 1.4).

Theorem 1.6 (Thurston[Thul, Andreev[An]). Suppose (S,T) is a closed triangulated
surface. Then

(a) An Euclidean circle packing metric on (8,T) is determined up to scaling by its
discrete curvature ky.

(b) A hyperbolic circle packing metric on (S,T) is determined by its discrete curvature
ko.

Furthermore, the space of all discrete curvatures {ko} of E2 (or H?) circle packing
metric on (S,T) is a convex polytope.
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Ty

7,

Fig. 1.4.

Definition 1.7 (Leibon[Le]). Suppose (S,T,d) is a K* polyhedral surface where K? =F?
or S* or H?. Then the Wy-curvature of it is the map Y : {edges in T} — R so that
wo(e) = 3 (b+b' +c+ —a—a') where a,d’ are the angles facing the edge e and b, b’ ¢, ¢’
are the angles adjacent to e.

Note that for Euclidean polyhedral surfaces, b+c=n—aand '+’ =n—a—d.
Thus, ywie)=nt—a—d.

Definition 1.8. A polyhedral surface (S,T,d) is called Delaunay if yy(e) 2 0 for all edges
e in the triangulation. In the case that the discrete curvature ko(v) = 0 at all vertices, i.e,
the polyhedral surface (S,T,d) is the geometric triangulation of a constant curvature
surface, the Delaunay condition is the some as the classical no-vertex-circle condition.
Namely, wy(e) = 0 for all e if and only if the circum-circle of each triangle contains no
vertex in its interior (in the universal cover).

Two remarkable rigidity theorems for Euclidean and hyperbolic polyhedral surfaces
are:

Theorem 1.9 (Rivin, 1995). Any Euclidean polyhedral metric on a closed triangulated
surface (S,T) is determined up to scaling by its @o-curvature ¢ : E — R so that ¢o(e) =
T —a—d where a,a are the angles facing e. Furthermore, the set of all ¢o-curvatures
{0} of all Delaunay Euclidean polyhedral metrics on (S,T) is a convex polytope.

Note by the remarks above, we have @p{e) = wo(e) in the Euclidean case. Thus De-
launay means ¢y = 0.

Theorem 1.10 (Leibon, 2002). A hyperbolic polyhedral metric on a triangulated closed
surface (S, T) is determined by its Yy-curvature. Furthermore, the set of all yy-curvatures
{wo} of Delaunay hyperbolic metrics on (S,T) is a convex polytope.

1.5 Some of Our Results

Following [Lul], we introduce three families of curvatures. The relationships between the
polyhedral metrics and these curvatures like quantities are the main focus of the study in
this book.

Suppose (S,7T) is a closed triangulated surface so that T is the triangulation, E and V
are the sets of all edges and vertices respectively. Let E?, S? and H? be the Euclidean, the
spherical and the hyperbolic 2-dimensional geometries recpectily.
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Definition 1.11. Let h € R. Given a K? polyhedral metric L on (S,T) where K* = E2, or

S? or H?, the ¢y-curvature of the polyhedral metric 1 is the function ¢y, : E — R sending
an edge e to:

/2 /2
Onle) = /a sin® (¢)dt + / sin’ (¢)dr (L.1)

where a,d’ are the inner angles facing the edge e. See Fig. 1.5.
The yy-curvature of the metric [ is the function yj, : E — R sending an edge e to

btc—a Y+ —d

vy(e) = /0_2_ cosh(t)dt+/0 cos"(t)dt 1.2)

where b, b ,c,c’ are the inner angles adjacent to the edge e and a,d’ are the angles facing
the edge e. See Fig. 1.5.

boundary of the surface

Fig. 1.5.
The h-th discrete curvature k;, of the polyhedral metric / on (S,T) is the function
ky : V — R sending a vertex v to

4—m

m. /2 h
k() = 2 m+ Y, /9 tan” (¢ /2)dt (1.3)
=1v%

where 01, -- , 0y, are all inner angles at the vertex v. See Fig. 1.5.

We remark that ¢p- and yp-curvatures were first introduced by I. Rivin [Ri] and G.
Leibon [Le] respectively.
We have

Theorem 1.12 ([Lull). Let h € R and (S, T) be a closed triangulated surface.

(1) A Euclidean circle packing metric on (S,T) is determined up to isometry and scaling
by its ky-th discrete curvature.

(2) A hyperbolic circle packing metric on (S, T) is determined up to isometry by its kp-th
discrete curvature.

(3) If h < —1, a Euclidean polyhedral metric on (S,T) is determined up to isometry and
scaling by its ¢p-curvature.

4) If h < —1 or h > 0, a spherical polyhedral metric on (S,T) is determined up to
isometry by its ¢p-curvature.

(5) If h < —1 or h > 0, a hyperbolic polyhedral surface is determined up to isometry by
its Yy-curvature.
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For any h € R, there are local rigidity theorems in cases (3), (4), (5). We believe that
above theorem holds for all # € R.

The counterpart of Theorem 1.12(5) for hyperbolic metrics with totally geodesic
boundary on an ideal triangulated compact surface is the following. Recall that an ideal
triangulated compact surface with boundary (S, T) is obtained by removing a small open
regular neighborhood of the vertices of a triangulation of a closed surface. The edges of
an ideal triangulation T correspond bijectively to the edges of the triangulation of the
closed surface. Given a hyperbolic metric / with geodesic boundary on an ideal triangu-
lated surface (S,T), there is a unique geometric ideal triangulation T* isotopic to T so
that all edges are geodesics orthogonal to the boundary. The edges in 7* decompose the
surface into hyperbolic right-angled hexagons. The y},-curvature of the hyperbolic metric
1 is defined to be the map y, : { all edges in T} - R sending each edge ¢ to

btc—a b e —d

l;/h(e):/0 ’ coshh(t)dt—O—/o ’ cosh’(¢)dt (1.4)

where a,a’ are lengths of arcs in the boundary (in the ideal triangulation T*) facing the
edge and b,b’,c,c’, are the lengths of arcs in the boundary adjacent to the edge so that
a,b,c lie in a hexagon. See Fig. 1.5.

Theorem 1.13 ([Lull). A hyperbolic metric with totally geodesic boundary on an ideal
triangulated compact surface is determined up to isometry by its Wy-curvature. Further-
more, if h > 0, then the set of all yy-curvatures on a fixed ideal triangulated surface is an
explicit open convex polytope Py in a Euclidean space so that P, = F.

The case when 4 < 0 has been recently established by Ren Guo [Gul]. He proved

Theorem 1.14 ({Gul}). Under the same assumption as in theorem 1.13, if h < 0, the set
of all yy-edge invariants on a fixed ideal triangulated surface is an explicit bounded open
convex polytope Py in a Euclidean space. Furthermore, if h < W, then P, C Py.

The interesting part of Theorem 1.13 is that the images of the Teichmiiller space in
these coordinates (for 4 > 0) are all the same. Whether these coordinates are related to
guantum Teichmiiller theory is an interesting topic. See [FC, Ka, BL, Te] for more infor-
mation. Combining Theorem 1.13 with the work of Ushijima [Us] and Kojima [Ko], one
obtains for each 2 > 0 a cell decomposition of the Teichmiiller space invariant under the
action of the mapping class group. '

The space of all polyhedral surfaces will also be studied in this book. In particular,
we will give a Marden-Rodin’s proof of Thurston’s theorem that the space of all discrete
curvatures {kg} of hyperbolic circle packing metrics on (S,7') is a convex polytope.

1.6 The Method of Proofs and Related Works

The variational principles were used to the proofs of above theorems. The use of varia-
tional principle on triangulated surfaces recently appeared in the seminal work of Colin
de Verdiere [CV 1] in 1991. In this work, Colin de Verdiere gave a new proof of Thurston-
Andreev’s circle packing theorem using a variational principle. The most striking part of
the proof in [CV1] is the discovery of an action functional for the geometric triangles.
This action functional of Colin de Verdiere can be considered as a 2-dimensional analo-
gous of the Schlaefli formula. Recall that for a tetrahedron in H3 or S?, if I, and 6, are the
length and dihedral angle at the edge e, then Schlaefli formula says



