e T

A I S, ST e o i

| Y

M el o 3 v .

A Guide to
the SQL Standard

C. J. Date

Preface

The purpose of this book is to describe the relational database language
SQL. SQL has been adopted as an official standard by the American Na-
tional Standards Institute (ANSI), and at the time of writing (late 1986) it
looks very likely that it will soon also be 2dopted as an international stan-
dard by the International Standards Organization (ISO). In addition, nu-
merous SQL-based products are already available in the marketplace (over
50 at the latest count). '

As some readers may be aware, 1 have already discussed the SQL lan-
guage at considerable length in several of my other books—including in
particular A Guide to DB2 (Addison-Wesley, 1984) and A Guide to INGRES
(Addison-Wesley, 1987)—and 1 am very conscious that I may be accused
of writing the same book over and over again ‘‘until I get it right.”” How-
ever, the treatment of SQL in the present book differs from that in those
earlier books in a number of significant ways:

= The emphasis is on the official standard version of SQL instead of on
one of the implemented dialects. The book should thus be relevant to
anyone interested in the SQL language and SQL implementations—not
just those from ‘‘the 1IBM world,”’ which is where SQL originated, but
also those with an interest in SQL implementations for, e.g., DEC,
Data General, Honeywell, ICL, . . . and other environments.

s The emphasis in the standard on the use of SQL for programmed (as
opposed to interactive) access to the’database has many ramifications
and repercussions on the way the book is structured and the way the
material is presented. In some ways the discussions are almost the re-
verse of what they were in the earlier books; those earlier presentations

il
o

viii

Preface

concentrated primarily on interactive SQL and discussed programming
SQL at the end, almost as an afterthought. The present book, by con-
irast, necessarily deals alimost exclusively with the use of SQL by pro-
grams.

The treatment is more thorough. All aspects of the language are dis-
cussed in’ detail. ‘In the eatlier books, by contrast, I was not aiming at
any such completeness, and it 'was expedient to simplify and/or ignore
certain aspects of the language.

At the same time, the book is (I hope) more ‘“user-friendly’’ than the
official SQL standard, in that it includes a more tutorial treatment of
the material. The official standard is not very easy to read—partly be-
cause it necessarily reflects the structure of the SQL language itself,
which in some ways is very ill-structured (despite the fact that the *‘S”’
in SQL stands for ‘‘Structured’’!), and partly also because it tends to
present the language bottom up instead of top down.

It follows from the previcus two paragraphs that the book is intended
both as a work of reference and as a tutorial guide; it includes both
formal definitions and numerous worked examples. However, I must
make it very clear that the book is not intended to replace the official
standard document but to complement it.

The book also includes a discussion of the differences between the stan-
dard version of SQL and the IBM version supported by the IBM prod-
uct DB2, an indepth examination of the official proposed extensions
to the standard for functions such as referential integrity, an annotated
SQL critique, an annotated bibliography, and other relevant items.

Finally, the book also includes numerous comments on (and criticisms
of) the standard. Such matter is set off from the body of the text by
“Comment’’ and “‘End of comment’’ delimiters, in order to be readily
distinguishable.

The book consists of twelve chapters and a set of appendices. The twelve

chapters fall into three broud groups, as follows:

. Introductory (Chapters 1-3)
. The standard in detail (Chapters 4-10)
. Possible extensions (Chapters 11-12)

Most of the examples are based on the familiar suppliers-and-parts

database (see Chapter 2). I make no apology for using this old warhorse
still one more time; basing the examples on such a familiar database should
(1 hope) make it easy for the reader to relate to those examples, and should

Preface ix

also facilitate comparisons between the standard version of SQL and spe-
cific vendor implementations—in particular, the implementations described
in A Guide to DB2 and A Guide to INGRES. In some respects, in fact, the
book can be seen as a complement to those latter two books.

The book is intended to be reasonably self-contained. The only back-
ground assumed of the reader is a general interest in the SQL language. All
relevant terms and concepts are defined and explained as they are intro-
duced.

ACKNOWLEDGMENTS

As usual, I am delighted to acknowledge my debt to the many people in-
volved, directly or indirectly, in the production of this book. First, it is a
pleasure to acknowledge my gratitude to Phil Shaw, the IBM representative
to the ANSI Database Committee, for his patience and assistance with my
numerous technical questions. Second, 1 am pleased to be able to thank my
reviewers Randell Flint, Carol Joyce, Geoff Sharman, and Phil Shaw (again)
for their many helpful comments on the manuscript. Third, I am deeply
indebted ro my long-suffering family and to numerous friends and col-
leagues for their support throughout this project. Last, 1 am (as always)
w-ateful to my editor, Elydia Siegel, and to the staff at Addison-Wesley for
t::cir assistance and their continually high standards of professionalism. It
has been (as always) a pleasure to work with them.

Saratoga, California C. J. Date

It is only fitting to dedicate this book to
the many people responsible, directly or indirectly,
or; the rise of SQL to its present preeminent position—
the original SQL language designers in IBM,
tne implementers of the IBM prototype System R
and the IBM products (DB2 and SQL/DS)
derived from that prototype,
and the ANSI Database Committee X3H2.
I hope this book does justice to their efforts.

Contents

CHAPTER 1 | Why SQL Is Important 1
1.1 Background.....oooii i 1
1.2 Is a Standard Desirable?. ...

CHAPTER 2 /| An Overview of SQL 7
2.7 Introduction ... 7
2.2 Data Definitionoooiiiiii e, 9
2.3 Data Manipulation 10
2.4 Cursor Operations.............cccooeviiiiiiinriiiineeei e 13
2D VI S 14
2.6 Date Control ... 1
2.7 Some Differences from DB2........cocoiiiiiiiii 18

CHAPTER 3 / Preliminaries 23
3.1 Basic Data Objects.......coooiiiii 23
3.2 Modules, Procedures, and Embedded SQL 27
3.3 Security, Integrity, and Transaction Processing 30
3.4 Basic Language Elementscc.ccoooviiii . 33
3.5 NOTAtION ...eeiiiiiie i e 35

xi

xii Contents

CHAPTER 4 / Data Definition: The Schema Definition
Language
4.1 SYNEAX.....oiiiiiiiiii e e e

4.2 Base Tablescovriiiiiiii e g
4.3 Privileges..........oocoiiiiiiiiiiiii e,

CHAPTER 5 / Data Manipulation: The Module Language

5.1 SYNEAX.....ooiiiiiiiiiiiiii i e
5.2 Procedures, Parameters, and Manipulative Statements.............
5.3 Indicator Parameters............coooeiiiiiiiiitiiii s

CHAPTER 6 / Data Manipulation: Cursor Operations

6.1 Introductionot
6.2 CUISOTS ...ooiiiiiii it e
6.3 Cursor-Based Manipulation Statements
6.4 A Comprehensive Example.................c..coiiiiiiiiii .

CHAPTER 7 /| Data Manipulation: Noncursor Operations

7.1 Introduction ..o
7.2 SELECT ...t et e e e e s
7.3 INSERT ..t

8.3 Retrieval Operations..............cco.ociiiiiiiiiiiiiiinn e
8.4 Update Operationsccocouiiiiiiiiiiiiiitiiiiii e

39
39

43

45

45
46
49
50

53
54
57

65

65
66
68
70
71

73

73
76

79

Contents xiii

CHAPTER 9 / Common Language Constructs 83
9.1 Query EXpressionscoooeiiiiiiiiniii 83
9.2 Query Specifications...............ccooeoiiiiiiiiiin 85
9.3 Scalar EXpressions.............cccccciviiiiiitiiniiiiiiiiinniniee e, 85
9.4 FUnctions...........coooiviiiiiiiiiiii e, 87
9.5 Table EXPressions...........ivicciiiiiiiiiiniis e S0
9.6 Search Conditions...............ccococceiiiiiiiiii 96
9.7 Unquantified Predicatescccoocevi oo, 97
9.8 SUDQUETIESuuiiiiiiiiiii e 102
9.9 Quantified Predicates......................ccoeeeviii i 104
CHAPTER 10 /| Embedded SQL 107
10.7 IntroduChion........o.oooiii i e ‘ 107
10.2 A Complete Examplec..ococeveeiiniiniiniiinn... PR 107
10.3 Points AriSINGccouiiviiiiiiiiiiiii e, 110
CHAPTER 11 / Definitional Extensions 113
111 Introduchon. ... 113
11.2 Default Values......o.oo.iiiiiiiei e 113
11.3 CHECK CORStraintsoovveieiviuiiairerereeiieneieeee e, 114
11.4 Referential Integrityccccoeimmneneiiiiriniinii e 115
CHAPTER 12 / Manipulative Extensions 121
12.1 Orthngonality Enhancementsc..ccccooooiiininiinnL, 121
12.2 Seroll CUTSOTS ..oviiiiiiiciiiiiiiice e e 123
APPENDIX A /| A Set of Sample Problems 125
AT Introducton ... 125
A2 Data Definition ... 125
A.3 Data Manipulation: Retrieval Giperations 127
A.4 Data Manipulatior: Update <3irations 130
A5 Embedded SQL 131

A.6 Answers... e et 131

xiv Contents

APPENDIX B / A SQL Grammar

B.1 Introduction..........cooiiiiiiiiiii
B.2 Schema Definition Language.................ccoooeiiiiiiinnn.
B.3 Module Language................oooooiiiiiiiiiiin s
B.4 Manipulative Statements....................c i
B.5 Query EXpressions..........ccoocooiiiiiiiiiiiiii
B.6 Search Conditions.............ocoviiiiiiiiiiiiinin e,
B.7 Scalar Expressionsccoooiiiiiiiii
B.8 Miscellaneous..................... P PP PP

APPENDIX C / Language Levels and Conformance
APPENDIX D / Some Differences Between the Standard and DB2

APPENDIX E / An Annotated SQL Critique

E.T Introduction ...
E.2 Lack of Orthogonality: Expressions........................
E.3 Lack of Orthogonality: Builtin Functions............................
E.4 Lack of Orthogonality: Miscellaneous Items
E.5 Formal Definition ...
E.6 Mismatch with Host Languages......................................
E.7 Missing Function.....................
E.8 Mistakesooooiiiiiiiiiii
E.9 Aspects of the Relational Model Not Supported..................
E.10 Summary and Conclusionsc...ccoeiiiiiciiniiiiinn,
E.11 Acknowledgments...................oo
E.12 References.............c.oooiiiiiiiiiiiii i

APPENDIX F / An Annotated Bibliography

Index

147

151

199

203

Why SQL Is Important

1.1 BACKGROUND

The name ““‘SQL’’—the official pronunciation is ‘‘ess-cue-ell,”’ but most
people usually pronounce it ‘‘sequel’’—was originally an acronym, stand-
ing for ‘‘Structured Query Language.”’ The SQL language consists of a set
of facilities for defining, manipulating, and controlling data in a relational
database. In order to understand why the language has become so wide-
spread and so generally important, it is helpful to have an appreciation of
some of the major developments in database technology over the past fif-
teen or so years. We therefore begin by summarizing those developments.

1. In 1970, E. F. Codd, at that time a member of the IBM Research Lab-
oratory in San Jose, California, published a now classic paper, ‘A Rela-
tional Model of Data for Large Shared Data Banks’’ (Communications of
the ACM, Vol. 13, No. 6, June 1970), in which he laid down a set of ab-
stract principles for database management: the so-called relational model.
The entire field of relational database technology has its origins in that
paper. Codd’s ideas led directly to a great deal of experimentation and re-
search in universities, industrial research laboratories, and similar estab-
lishments, and that activity in turn led to the numerous relational products
now available in the marketplace. The many advantages of the relational
approach are far too well known to need repeating here; see, e.g., either

2 Why SQL Is Important

of the author’s books A Guide to DB2 (Addison-Wesléy, 1984) or A Guide
to INGRES (Addison-Wesley, 1987) for a discussion of those advantages.

2. One particular aspect of the research just referred to was the design
and prototype implementation of a variety of relational languages. A re-
lational language is a language that realizes, in some concrete syntactic form,
some or all of the features of the abstract relational model. Several such
languages were created in the early and mid 1970s. One such language in
particular was the ‘‘Structured English Query Language’” (SEQUEL), de-
fined by D. D. Chamberlin and others at the IBM San Jose Research Lab-
oratory (1974) and first implemented in an IBM prototype called SEQUEL-
XRM (1974-75).

3. Partly as a result of experience with SEQUEL-XRM, a revised version
of SEQUEL called SEQUEL/2 was defined in 1976-77. (The name was
subsequently changed to SQL for legal reasons.) Work began on another,
more ambitious, IBM prototype called System R. System R, an implemen-
tation of a large subset of the SEQUEL/2 (or SQL) language, became op-
erational in 1977 and was subsequently installed in a number of user sites,
both internal IBM sites and also (under a set of joint study agreements}
selected IBM customer sites. Note: A number of further changes were made
to the SQL language during the lifetime of the System R project, partly in
response to user suggestions; for instance, an EXISTS function was added
to test whether some specified data existed in the database.

4. Thanks in large part to the success of System R, it became apparent in
the late 1970s that IBM would probably develop one or more products based
on the System R technology—specifically, products that implemented the
SQL language. As a result, other vendors also began to construct their own
SQL-based products. In fact, at least one such product, namely ORACLE,
from Relational Software Inc. (subsequently renamed Oracle Corporation),
was actually introduced to the market prior to IBM’s own products. Then,
in 1981, IBM did announce a SQL product, namely SQL/DS, for the DOS/
VSE environment. IBM then followed that announcement with one for a
VM/CMS version of SQL/DS (1982), and another for an MVS product
called DB2 that was broadly compatible with SQL/DS {1983).

5. Over the next several years, numerous other vendors also announced
SQL-based products. Those announcements included both entirely new
products such as DG/SQL (Data General Corporation, 1984) and SYBASE
(Sybase Inc., 1986), and SQL interfaces to established products such as
INGRES (Relational Technology Inc., 1981, 1985) and the IDM (Britton-
Lee Inc., 1982, 1985). There are now (1986) some fifty or so products in
the marketplace that support some dialect of SQL, running on machines

1.1 Background 3

that range all the way from quite small micros to the largest mainframes.
SQL has become the de facto standard in the relational database worid.

6. SQL has also become an official standard. In 1982, the American Na-
tional Standards Institute (ANSI) chartered its Database Committee (X3H2)
to develop a proposal for a standard relational language. The X3H2 pro-
posal, which was finally ratified by ANSI in 1986, consisted essentially of
the IBM dialect of SQL, ‘‘warts and all’’ (except that a few—in this writer’s
opinion, far too few—minor 1BM idiosyncrasies were removed). At the time
of writing, it looks likely that the X3H2 proposal will soon be accepted as
an international standard by the International Standards Organization
(1SO).

From this point on we will generally take the unqualified name *‘SQL”’

to refer to the official standard version of the language. From time to time

.we may also use the term ‘‘standard SQL’’ for emphasis. We will always

use qualified names such as “DB2 SQL’’ to refer to specific implemented
dialects.

In many ways, the SQL standard is not particularly usefu! in itself; it
has been characterized, perhaps a little unkindly, as ‘‘the intersection of
existing implementations,’’* and as such is severely deficient in a number
of respects (see Section 1.2). Recognizing this fact, the X3H2 Committee
is currently at work on a set of proposed extensions to the base standard.
We will discuss some of those extensions in this book—but the reader is
cautioned that they are only proposed extensions and are not (yet) part of
the official standard, and hence are subject to possible change.

Following on from the previous point: It is only fair to stress that, while
(as already stated) there are some fifty or so SQL implementations available
today, no two of those implementations are precisely identical, and none
of them is precisely identical to standard SQL! Even the IBM implemen-
tations ic SQL/DS and DB2 are not 100 percent compatible with each other,
and each of them differs from System R SQL and also from standard SQL
on numerous points of detail—not all of them trivial, incidentally. This
state of affairs may possibly change with time, of course. In this book we
will be concentrating on standard SQL specifically (for the most part); how-
ever, we will also mention certain major deviations from the standa.d. In

*More accurately, this description refers to ‘‘Level 17’ of the standard (see Appendix
C). But the comment does highlight a general criticisin, which is that the SQL stan-
dard, at least in its first version, seems more concerned with protecting existing
vendor implementations than with establishing a truly solid foundation for the fu-
ture,

4 Why SQL Is Important

particular, we will indicate where IBM (in the shape of DB2, and possibly
SQL/DS) supports some significant feature that is not part of standard
SQL.

One final point of a historical nature: The original version of SQL was
intended for standalone, interactive use. However, facilities were added later
to allow the invocation of SQL operations from an application program-
ming language such as COBOL or PL/I. By contrast, the SQL standard
concentrates almost exclusively on those latter (application programming)
facilities, presumably on the grounds that standardization is much more
significant for portability of programs than it is for interactive interfaces.
This emphasis is reflected in the structure of the present book, as will be
seen.

1.2 IS A STANDARD DESIRABLE?

Before going any further, we should perhaps consider the question of
whether a SQL-based standard is a good thing. On the one hand, the ad-
vantages are fairly obvious:

Reduced training costs: Application developers can move from one en-
vironment to another without the need for expensive retraining.

Application portability: Applications—in particular, applications de-
veloped by third-party software vendors—can run unchanged in a va-
rnety of different hardware and software environment,. Applications
*-an be developed in one environment (e.g., on 2 PC) and then run in
another (e.g., on a large mainframe).*

« Application longevity: Standard languages are assured of a reasonably
long lifetime. Applications de;veloped using such languages are there-
fore assured of a reasonably long lifetime also.

* Cross-system communication: Different systems can more easily com-
municate with one another. In particular, different database manage-
ment systems might be able to function as equal partners in a single
distributed database system if they all support the same standard in-
terface.

*A note of caution is in order here. SQL is a database language, not a complete
programining language a typical application will involve, not only SQL statements,
but also statements in some host language such as COBOL. The portability of such
an application will thus depend on the portability of the host language as well as
on that of SQL.

1.2 Is a Standard Desirable? 5

= Customer choice: If all systems support the same interface, customers
can concentrate on the problem of chocsing the implementation that
best meets their own particular needs, without having to get involved
in the additional complexity of choosing among different interfaces
(possibly widely different interfaces). :

On the other hand, there are some major disadvantages also:

* A standard can stifle creativity: Implementers may effectively be
preempted from providing ‘‘the best” (or a good) solution to some
problem, because the standard already prescribes some alternative, less
satisfactory, solution to that same problem.

* SQL in particular is very far from ideal as a relational language: This
criticism is elaborated in Appendix E. To quote from that appendix:
... it cannot be denied that SQI. in its present form leaves rather a
lot to be desired—even that, in some important respects, it fails to re-
alize the full potential of the relational model.”” The basic problem (in
this writer’s opinion) is that, although there are well-established prin-
ciples for the design of formal languages, there is little evidence that
SQL was ever designed in accordance with any such principles. As a
result, the language is filled with numerous restrictions, ad hoc con-
structs, and annoying special rules. These factors in turn make the lan-
guage hard to define, describe, teach, learn, remember, apply, and im-
plement.

* Standard SQL especially is severely deficient in several respects: In ad-
dition to the deficiencies mentioned under the previous point (i.e., de-
ficiencies that are intrinsic to the original SQL language per se), stan-
dard SQL in particular suffers from certain additional deficiencies.
Specifically, it fails to include any support at all for several functions
that are clearly needed in practice (e.g., the DROP TABLE function),
and it leaves as ‘‘implementation-defined’’ cer:ain aspects that would
be much better spelled out as part of the standard (e.g., the effect of
certain operations on cursor position). As a result, it seems likely that
every realistic implementation of the standard will necessarily include
many implementation-defined extensions and variations, and hence that
no two “‘standard’” SQL implementations will ever be truly identical.

Despite these drawbacks, however, the fact is that the standard exists,
vendors are scrambling to support it, and customers are demanding such
support. Hence this book.

An Overview of SQL

2.1 INTRODUCTION

The aim of this chapter is to present a brief and very informal introduction
to some of the major facilities of standard SQL, and thereby to pave the
way for an understanding of the more formal and thorough treatment of
the language in subsequent chapters. The chapter is loosely based on Chap-
ter 1 (‘‘Relational Daiabase: An Gverview’’) from the author’s book Re-
lational Database: Seiected Wrinings {Addison-Wesley, 1986).

The function of the SQL language is to support the definition, manip-
ulation, and control of data in a relationzi database. A relational database
is simply a database that is perceived by t':: user as a collection of tables—
where a table is an unordered collection +f rows (*‘relation”’ is just a math-
ematical term for such a table). An example, the suppliers-and-parts data-
base, is shown in Fig. 2.1. Tables S, P, and SP in that figure represent,
respectively, suppliers, parts,’and shipments of parts by suppliers. Note that
each table can be tho:ght of as a file, with the rows representing records
and the columns fields. The SQL standard always uses the terms *“‘row”’
and ‘‘column,’” however, never ““record”’ and ‘‘field,”’ and in this book we
will therefore generally do likewise.

SQL ‘‘data manipulation’’ statements—i.e.. SQL statements that per-
form data retrieval or updating functions—can be invoked either interac-
tively or from within an application program. Figure 2.2 illustrates both

7

8 An Overview of SQL

S SNO SNAME STATUS CITY SP SNO PNO QTY
s1 Smith 20 London S1 Pl 300
Ss2 Jones 10 Paris S1 P2 200
s3 Blake 30 Paris S1 P3 400
sS4 Clark 20 London S1 P4 200
S5 Adams 30 Athens S1 PS5 100

Sl P6 100
mmm mmmme emmee ieee ool S2 Pl 300

P PNO PNAME COLOR WFICHT CITY s2 P2 400
AR L e R et S3 P2 200
Pl Nut Red 12 London S4 P2 200
P2 Bolt Green 17 Paris sS4 P4 300
P3 Screw Blue 17 Rome S4 PS5 400
P4 Screw Red 14 London
PS Cam Blue 12 Paris
P6 cog Red 19 London

Fig. 2.1 The suppliers-and-parts database (sample values)

(a) Interactive invocation:

SELECT S.CITY Result: CITY
FROM s e
WHERE S.SNO = 'S4’ London

(b) Invocation from an application program (PL/I):

EXEC SQL SELECT S.CITY INTO :SC Result: SC
FROM s eemeea
WHERE S.SNO = 'S4’ ; London

Fig. 2.2 SQL retrieval example

cases; it shows a data retrieval operation (SELECT in SQL) being used both
(a) interactively and (b) from within a PL/1 program. In general, interactive
invocation means that the statement in question is executed from an inter-
active terminal and (in the case of retrieval) the result is displayed at that
terminal. Invocation from within an application program means that the
statement is executed as part of the process of executing that program and
(in the case of retrieval) the result is fetched ihto an input area within that
program (‘“:SC”’ in Fig. 2.2(b)). Note: The syntactic style illustrated in Fig.
2.2 for invoking SQL from an application program is not the only one
possible. See Chapter 3.

One further remark: The reader will have noticed that we used qualified
column names (S.SNO, S.CITY) in Fig. 2.2. SQL in fact allows qualifiers
to be omitted in many contexts (including, in particular, the SELECT and

