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Preface

Smart materials, added value manufacturing and factories for the future
are key technological subjects for the future product developments and
innovation. One of the key challenges is to play with the microstructure of the
material to not only improve its properties but also to find new properties.
Another key challenge is to define micro- or nanocomposites in order to mix
physical properties. This allows enlarging the field of possible innovative
material design. The other key challenge is to define new manufacturing
processes to realize these materials and new factory organization to produce
the commercial product. From the material to the product, the numerical
design tools must follow all these evolutions from the nanoscopic scale to the
macroscopic scale (simulation and optimization of the factory). If we analyze
the great amount of numerical tool development in the world, we find a great
amount of development at the nanoscopic to the microscopic scales, typically
linked to ab initio calculations and molecular dynamics. We also find a great
amount of numerical approaches used at the millimeter to the meter scales.
The most famous one in the field of engineering is the finite element method.
However, there is a numerical death valley to pass through, from micrometers
to several centimeters. This scale corresponds to the need for taking into
account discontinuity or microstructures in the material behavior at the
sample scale or component scale (several centimeters). Since the 2000s, some
attempts have been carried out to apply the discrete element method (DEM)
for simulation of continuous materials. This method has been developed
historically for true granular materials, such as sand, civil engineering grains
and pharmaceutical powders. Some recent developments give new and simple
tools to simulate quantitatively continuous materials and to pass from
microscopic interactions at the material scale to the classical macroscopic
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properties at the component scale (stress and strain, thermal conductivity,
cracks, damages, electrical resistivity, etc.).

In this set of books on discrete element model and simulation of
continuous materials, we propose to present and explain the main advances in-
this field since 2010. The first book explained in a clear and simple manner
the numerical way to build a DEM simulation that gives the right (same)
macroscopic material properties, e.g. Young's modulus, Poisson’s ratio,
thermal conductivity, etc. Then, it showed how this numerical tool offers a
new and powerful method for analysis and modeling of cracks, damages and
finally failure of a component. In this second book, we present the coupling
(bridging) between the DEM method and continuum numerical methods, such
as the constrained natural element method. This allows us to focus DEM in
the parts where the microscopic properties and discontinuities lead the
behavior and leave continuum calculation where the material can be
considered as continuous and homogeneous. Coupling scales for highly
dynamic problem has been a challenge for a long time. This book shows how
to choose the coupling parameters properly to avoid spurious wave reflection
and to allow the passage of all the dynamic information both from fine to
coarse model and from coarse to fine model. The second part demonstrates
the ability of the coupling method to simulate a highly nonlinear dynamical
problem: the laser shock processing of silica glass.

A further book in this set presents the numerical code developed under the
free License GPL ‘GranOO’: www.granoo.org. All the presented
developments are implemented in a simple way on this platform. This allows
scientists and engineers to test and contribute to improving the presented
methods in a simple and open way.

Now, dear readers let us open this book and welcome in the DEM
community for the material of future development ...

Ivan IORDANOFF
Bordeaux, France
August, 2015



Introduction

I.1. Bridging the scales in science and engineering

Over the past few decades, numerical simulation has firmly established
itself as a partner to experiment with unraveling the fundamental principles
behind continuous material behaviors. Starting from the 1960s, this approach
received strong scientific interest which led to the development of a great
number of numerical methods. These methods can be divided into continuum
methods (CMs) and discrete methods (DMs). Undoubtedly, the CMs are the
most commonly used to solve problems at the engineering (macroscopic)
scale, at which the mechanical behavior of materials can generally be
described by continuum mechanics. However, their application to investigate
microscopic effects, which can have a profound impact on what happens at
larger space and time scales, faces several difficulties. Although solutions that
are more or less reliable have been proposed in the literature to get over these
difficulties, an accurate description of numerous engineering problems
remains very challenging for CMs. Some difficulties, associated with reliance
of these methods on a predefined mesh and/or unsuitability in dealing with
discontinuities, are still not adequately ironed out. In contrast, the DMs
naturally provide solutions for most of these outstanding difficulties. These
are based on discrete mechanics and do not rely on any kind of mesh. Using
DMs, the studied domain is modeled by a set of discrete bodies allowing
discontinuities to be naturally taken into account. Although these methods
were originally developed to study naturally discrete problems, their features
have been proven to be very attractive for several continuous problems
involving complex microscopic effects, e.g. damage, fracture and
fragmentation. Application of such methods to overcome the CM limitations
is then well worth exploring. Nevertheless, the lack of theoretical framework
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allowing these methods to properly model continua has restricted their
application on this kind of problem until very recently.

Modeling continuous problems with DMs mainly faces two significant
challenges. The first challenge concerns the choice of the cohesive links
between the neighboring discrete bodies and the identification of their
microscopic parameters so as to ensure the expected macroscopic mechanical
behavior. The second challenge concerns the construction of the discrete
domain which must take into account the structural properties of the original
problem domain, e.g. homogeneity and isotropy, and must ensure
independence of the macroscopic mechanical behavior on the discrete bodies
number. The first book of this set, Discrete Element Method to Model 3D
Continuous Materials [JEB 15], tried to tackle these challenges and to
provide a comprehensive methodology allowing for correct discrete element
modeling of continuous materials. This methodology was developed for a
particular discrete element method (DEM) in which a given material is
modeled by a set of rigid spheres in interaction with each other by
three-dimensional (3D) cohesive beam bonds. As shown in [JEB 15], several
conditions must be satisfied to properly model continua using the proposed
DEM variation. The development of this DEM variation, in addition to the
ever-increasing power and affordability of fast computers, has brought
discrete element modeling of continuous material within reach. Nowadays,
such a method presents a prominent tool for elucidating complex mechanical
behaviors of continuous materials [AND 12b, JEB 15]. It was successfully
applied to investigate several challenging problems that cannot be easily
treated by CMs [AND 13, AND 12a, TER 13, JEB 13a, JEB 13b]. The major
drawback of this method is that it is very time-consuming compared to CMs
and the computation time can quickly become crippling, especially in the case
of a large studied domain. However, in modern material science and
engineering, real materials usually exhibit phenomena requiring multi-scale
analysis. These phenomena require on one scale a very accurate and
computationally expensive description to capture the complex effects at this
scale and on another scale a coarser description is sufficient and, in fact,
necessary to avoid prohibitively large computation. Therefore, in a view of
expanding the scope of proposed DEM and alleviating its limitations, it would
be beneficial to couple this approach with a CM, such that the computation
effort can be distributed as needed.

In many mechanical problems, the notion of multi-scale modeling arises
quite naturally. Indeed, most of the material behaviors at the macroscopic
scale, which is the scale of interest for engineering applications, are
determined by microscopic interactions between atoms. This is why such a
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notion has become a special area of interest for many scientists.
Consequently, several multi-scale coupling methods have been developed
over the last three decades. In a pioneer work, Ben Dhia
[BEN 01, BEN 05, BEN 98] developed the Arlequin approach as a general
framework which allows the intermixing of various mechanical models for
structural analysis and computation. Abraham et al. [ABR 98, BRO 99]
developed a methodology that couples the tight-bending quantum mechanics
with molecular dynamics (MD) such that the two Hamiltonians are averaged
in a bridging region. A damping was used in this region to reduce spurious
reflections at the interface between the two models. Nevertheless, the choice
of the damping coefficient remains difficult. Smirnova et al. [SMI 99]
proposed a combined MD and finite element method (FEM) model with a
transition zone in which the FEM nodes coincide with the positions of the
particles in the MD region. The particles in the transition zone interact with
the MD region via the interaction potential. At the same time, they experience
the nodal forces due to the FEM grid. Belytschko and Xiao [BEL 03, XIA 04]
developed a coupling method between the molecular dynamics and
continuum mechanics models based on the bridging domain technique. In this
method, the two models are overlaid at the interface and constrained with a
Lagrange multiplier model in the bridging region. Fish et al. [FIS 07)]
formulated an atomistic-continuum coupling method based on a blend of the
continuum stress and the atomistic force. In terms of equations, this method is
very similar to the Arlequin approach [BEN 01, BEN 05, BEN 98]. In an
interesting work, Chamoin et al. [CHA 10] analyzed the main spurious effects
in the atomic-to-continuum coupling approaches and they proposed a
corrective method based on the computation and injection of dead forces in
the Arlequin formulation to offset these effects. Aubertin et al. [AUB 10]
applied the Arlequin approach to couple the extended finite element method
(X-FEM) with MD to study dynamic crack propagation. Bauman et al.
[BAU 09] developed a 3D multi-scale method, based on the Arlequin
approach, between highly heterogeneous particle models and nonlinear elastic
continuum models. For more details, several papers reviewing these methods
can be found in the literature [LU 05, XU 09, JEB 14, CUR 03]. Based on
these papers, three approaches can mainly be used to couple DEM with CMs:
the hierarchical, concurrent and hybrid hierarchical-concurrent coupling
approach.

The hierarchical coupling approach, also called sequential, serial, implicit
or message passing, is the most widely used and computationally the most
efficient. This approach aims to piece together a hierarchy of numerical
methods in which the coarse-scale model uses information obtained by the
more detailed fine-scale model. The homogenization methods for multi-phasc
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media are typical examples of the hierarchical coupling approach. The
response of a representative volume element at a fine scale is first computed,
and from this, a stress-strain law is extracted to describe the mechanical
behavior of the homogenized material at coarser scale. The hierarchical
approach is generally well suited for problems in which the different analysis
scales are decoupled or weakly coupled. In other words, it can be used when
the large-scale variations appear homogeneous and quasi-static from the fine
scale point of view.

The concurrent coupling approach, also called parallel or explicit, consists
of linking numerical models of different scales together in a single combined
model, such that the fine-scale model communicates directly and instantly
with the coarse-scale model through some coupling procedure. Both
compatibility and momentum balance are enforced across the interface
between the coupled models. This type of coupling approach is well suited to
study multi-scale problems in which the behavior at each scale depends
strongly on what happens at the other scale. A variation of the concurrent
approach, generally referred to as semi-concurrent, is that in which the
coupled models run together and communicate instantly with each other but
are not intimately coupled. Compatibility and momentum balance are only
satisfied approximately. The advantages of this approach lie in the fact that the
coupled models can be computed by separate software. The FE? multi-scale
approach of Feyel and Chaboche [FEY 00] is an example of this variation.

In some multi-scale problems, the involved scales can be weakly coupled
at the beginning of the computation up to a certain response limit, and
subsequently become highly dependent. Therefore, it would be
computationally beneficial to combine the above two coupling approaches to
study such problems. This has led to the development of the hybrid
hierarchical-concurrent (or hierarchical-semi-concurrent) coupling approach.
The hierarchical approach is used as long as the requested fine-scale
information is available. When this information is no longer accessible, due to
strain localization, for example, the concurrent (or semi-concurrent) approach
is invoked. If the fine-scale response is history dependent, it is necessary to
reconstruct at least an approximate history. An example of this approach is
the adaptive multi-scale approach developed by Akbari et al. [AKB 12] to
study the quasi-brittle crack propagation in metals. In this approach, the FE?
technique is used in the safe regions of the studied domain. When strain
localization appears, the concurrent coupling approach is used to solve the
problem exactly at the material heterogeneities scale. Compared to the first
two  coupling  approaches, the  hybrid  hierarchical-concurrent
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(hierarchical-semi-concurrent) coupling approach is relatively recent, and is,
at present, the subject of several studies [AKB 12, NUG 07].

The choice of one of the above multi-scale approaches to couple DEM and
CMs depends on the type and nature of the mechanical problems to be studied.
This point will be discussed in the next section.

1.2. Scope and objective

The ever-accelerating progreés in applied science and engineering has
given rise to numerous interesting problems that require multi-scale modeling
to accurately handle the relevant phenomena, while reducing the computation
time. Of particular interest are the fast dynamic problems which generally
involve strongly dependent multi-scale effects. Due to their complexity, these
problems so far present a central issue for traditional numerical methods. In
contrast, the DEM variation proposed [JEB 15], which is well adapted for
highly dynamic analysis, can give answers to several outstanding questions
related to such problems. In order to benefit from the DEM strengths in
solving such problems, this book focuses on this type of problem. A common
feature of most of these problems is that the regions requiring fine-scale
analysis by DEM are generally small with respect to the full studied domain.
Modeling such problems with DEM-CM coupling approach can thereby
considerably reduce the computation costs without affecting the solution
accuracy. Therefore, the first objective of this book aims to develop a robust
multi-scale discrete-continuum coupling approach between DEM and a CM,
adapted for highly dynamic problems. Among the cited coupling approaches,
the concurrent approach offers several potential benefits with regard to this
objective. Indeed, this approach is the most suitable to model strongly
dependent multi-scale phenomena which are frequently encountered in
complex highly dynamic problems. This approach is then retained to couple
DEM with a CM to be chosen. As already known, numerous CMs used to
model material behaviors can be found in the literature [LIU 03, LUC 77,
ZIE 05¢, ZIE 05a, ZIE 05b, CHI 11]. Each method has its features and
specificities. The choice of the most appropriate CM to be coupled with DEM
is thus not straightforward. To simplify this task, the most commonly used
CMs will be classified according to their advantages and drawbacks with
respect to the aim of the present work. Based on this classification, the
method that best meets the expectation of this work will be retained for
coupling with DEM. Then, a concurrent coupling approach adapted for highly
dynamic multi-scale problems will be developed between these two methods.
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With the development of the discrete-continuum coupling approach,
several interesting complex applications in fast dynamics become affordable.
One particular application is the laser shock processing (LSP) of materials.
Since its first industrial application in the 1970s, LSP has become widely used
in various engineering areas to improve the near-surface mechanical
properties of metals, to remove matter by cutting or drilling, to harden or
texture surfaces, etc. The ever-increasing use of this process has created a
need for more in-depth studies to deal with some outstanding challenges.
Despite the current experimental advances in this direction, some of these
challenges still remain to be solved. Therefore, numerical simulation has
become essential to support the experimental studies. To numerically study an
LSP test from a mechanical point of view, it is necessary to know the
mechanical loading generated by the laser—matter interaction. Several models
aiming to approximate this loading exist in the literature
[MAI 08, KHA 05, COL 06, FRO 93]. However, the various simplifying
assumptions underlying these models have made them inaccurate in the
general case. Application of the developed discrete element
method-constrained natural element method (DEM-CNEM) coupling
approach as an inverse technique to enrich the results of these models, based
on the final experimental results of an LSP test, would be an avenue worth
exploring. Nevertheless, implementation of this idea requires preliminary
simulations to ensure that this coupling approach can correctly predict the
important mechanical phenomena frequently encountered in LSP. This is the
second goal of this work which aims to study qualitatively the complex LSP
mechanical phenomena. The mechanical loading applied in this study is
inspired by those obtained using a specialized laser—matter interaction
software. Several interesting materials are routinely used in different laser
applications and require additional investigation in their response to laser
radiation. Of particular interest is silica glass which is the dominant
constitutional material of the optical equipment in laser devices. This material
is known to exhibit anomalous behavior in its thermal and mechanical
properties [BRU 70, BRU 71]. Furthermore, certain properties of this glass
such as Young's modulus, shear modulus and density show anomalous
dependence on the fictive temperature. Because of its complex mechanical
behavior, numerical study of this material remains a central issue for several
researchers. These reasons have made silica glass an attractive material to be
studied numerically. Therefore, it was selected as a part of the LSP
application to be studied by the DEM-CM coupling approach. More precisely,
the proposed coupling approach will be applied to simulate, from a
mechanical point of view, the LSP of silica glass.



Introduction  Xxxv

1.3. Organization

Following this introduction, the current book is divided into two parts.
Part 1 deals with the first objective of this book which is the development of a
discrete-continuum coupling approach adapted for highly dynamic multi-scale
problems. This part consists of three chapters:

— Chapter 1 reviews some important aspects related to discrete-continuum
coupling in dynamics. First, the main coupling challenges to be addressed are
detailed. Then, the different concurrent coupling techniques reported in the
literature are reviewed. Based on this review, the most appropriate technique is
retained to concurrently couple DEM and a CM to be chosen.

— Chapter 2 aims to select the appropriate CM that will be used as a
part of the discrete-continuum coupling. First, the most commonly used
CMs in computational mechanics are reviewed and classified. Based on this
classification, the method that best meets the expectations of the current work
is chosen. Finally, the main specificities of the retained method are briefly
recalled.

— Chapter 3 focuses on the development of the discrete-continuum
coupling method between DEM and the chosen CM. After detailing how
the coupling approach is performed, a parametric study of the different
coupling parameters is performed. This study aims to draw recommendations
simplifying the choice of these parameters in practice, and then to simplify
the application of the coupling method on complex problems. Finally, the
developed coupling approach is validated using several dynamic reference
tests.

Part 2 is dedicated to the application of the developed discrete-continuum
coupling approach to qualitatively study the LSP of silica glass, which is the
second goal of this book. This part is also divided into three chapters:

— Chapter 4 gives some background knowledge of the different disciplines
that interact to accomplish the second objective of this book. First, the
laser—matter interaction theory is briefly recalled to identify the important
phenomena that must be taken into account to correctly simulate the LSP
of silica glass. Then. some important experimental works on the mechanical
response of silica glass under different loadings are reviewed. This review
serves to provide the main specificities of the silica glass mechanical behavior
that is modeled using the proposed coupling approach.

— Chapter 5 focuses on the modeling of silica glass mechanical behavior.
A new model intended to faithfully reproduce the different specificities of the
silica glass response under highly dynamic loadings is proposed. This model
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is based on the normal stress in the cohesive beam bonds between discrete
elements. Validation of this model is first performed in quasi-statics to simplify
the analysis of the potential difficulties, and subsequently in fast dynamics by
simulation of high-velocity impact tests of silica glass plates. To describe the
silica glass brittle fracture, the virial-stress-based model developed in the first
book of this series [JEB 15] is used. The main specificities of this model are
briefly recalled at the end of this chapter.

— Chapter 6 investigates the ability of the developed discrete-continuum
coupling approach to correctly predict the important mechanical effects
characterizing an LSP experiment. To this end, a test of LSP of silica glass is
reproduced numerically using this approach as well as the silica glass models
detailed in the previous chapter.

Finally, this book ends with several conclusions and outlooks.
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