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Chapter 8
Electrostatic Field in Vacuum

From this chapter we will discuss the electromagnetic interaction that is one of four essential interac-
tion in nature. The constructions of all, from the giant star to the mountains, rivers, forests and living
things, are associated with electromagnetic interaction. The application achievement of electromagnetism
can be found everywhere, from the modern science and technique to the people’s daily live. In this chap-
ter we want to discuss mainly to the property of the electric field set up by the static charge relative to a
observer in vacuum. She contents involve the interaction between the charges— Cloulomb’ s law, for de-
scription the property of the electric field to introduce two physical quantity—electric field and electric
potential, and the property of the electrostatic field—Gauss’ law, and the relationship between electric

field and electric potential.

§ 8-1 Coulomb’s Law

1. Electric charges

(1) Two kinds of electric charges

The electric phenomenon was known to the ancient Greeks as long ago as 600 B. C.It was found that am-
ber,rubbed by wool or cat’s fur, would attract small objects, like bits of lint or dust. Nowadays , rubber rod
and fur are commonly used in demonstration . The rubber rod, after rubbing with fur, will acquire the prop-
erty of attracting light objects. In order to describe this property, we say that rubber rod is electrified , or
possesses an electric charge. If we hold an electrified rubber rod near two small and very light pith balls
that are suspended near each other by fine silk threads, at first they will be attracted to the electrified rub-
ber rob and will cling to it. But after the pith balls touch the rubber rod, they will be repelled by the rub-
ber rod and will also repel each other.If we do similar experiment with a glass rod that has been rubbed
with silk, it will give rise to the same result. The pith balls electrified by contact with such a rod are re-
pelled not only by the glass rod but by each other.On the other hand, when a pith ball that has been in
contact with electrified rubber is placed near one that has been in contact with electrified glass, the pith
balls attract each other. We explain these facts by saying that rubbing a rod give it an electric charge and
that the charges on the rubber rod and on the glass rod must be different. The pith balls become charged
by virtue of their contact with two kind of rod. We are therefore led to the conclusion that there are two
kinds of electric charges. One is called a negative charge , which is possessed by rubber rod after being
rubbed with fur, and the other is called positive charge , which is possessed by glass rod after being rub-
ber with silk.We can sum up these experiments by saying that like charges repel each other and unlike
charges attract each other .



Electric effects are not limited to glass rod rubbed with silk or to rubber rod rubbed with fur. Any
substance rubbed with any other under suitable conditions will become charged to some extent . By compar-
ing the unknown charge with glass rod which had been rubbed with silk or rubber rod which had been
rubbed with fur, it can be labeled as either positive or negative.

Matter as we ordinarily experience it can be regarded as composed of atoms in which there are three
kinds of subatomic particles, the negatively charged electron,the positively charged proton,and the neutral
neutron . The negative charge of the electron is of the same magnitude as the positive charge of the proton
and no charges of smaller magnitude have ever been observed. The protons and neutrons form a nucleus
which has a net positive charge due to the protons. The diameter of the nucleus, as roughly spherical , is of
the order of magnitude 10 *“m. Outside the nucleus, at relatively large distances from it, are the electrons,
whose number is equal to the number of protons within the nucleus. The SI unit of charge is the Coulomb
(abbr.C) . The charge carried by an electron or proton is called fundamental charge . This charge,to which
we give the symbol e, has the magnitude 1.60 x 10°C.It is one of the important constant of nature.

The modem view of bulk matter is that, in its normal or neutral state, it contains equal amounts of
positive and negative charges (the total number of protons equals the total number of electrons) . If two
bodies like glass and silk are rubbed together,some of the electrons is transferred from one to the other,
upsetting the electric neutrality of each, so that one body has an excess and the other a deficiency of that
electrons. The experiment,a rubber rod is rubbed with fur and a glass rod is rubbed with silk, indicates
that rubber and silk obtain some electrons and fur and glass red loss some of their electrons. The “charge”
of a body refers to its excess charge only.The excess charge is always a very small fraction of the total
positive or negative charge in the body.

(2) Quantization of charge

In former times electric charge was thought of as a continuous fluid. The atomic theory of matter,
however, has shown that fluids themselves,such as water and air, are not continuous but are made up of
atoms and molecules . Experiment shows that the “electric fluid” is not continuous either but that it is
made up of multiples of the fundamental e .To give a body an excess negative charge, we may add a num-
ber of electrons to neutral body, while a number of electrons from neutral body will result in an excess
positive charge . Therefore,any physically existing charge q,no matter what its origin,can be written as

gq=Ne;N=+£1,+2, 3 (8-1)
where NV is a positive or a negative integer. This conclusion is called quantization of charge . The quantum
of charge ¢ is so small that the “graininess” of electricity does not show up in large-scale experiments,
just as we do not realize that the air we breathe is make up of atoms.The charge of a body is generally
considered as continuously, for it contains practically a tremendous number of charged particles.

(3) The conservation of charge

In the case of the glass rod rubbed with silk, electrons are transferred from the glass to the silk, giv-
ing the silk a net negative charge and leaving the glass rod with an equal positive charge. This suggests
that rubbing does not create charge but only transfers it from one object to another, disturbing slightly the
electrical neutrality of each during the process. We say that charge is conserved in the rubbing process.
But in addition to friction there are some process in which the charged particles are created or vanished.
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An interesting example comes about when an electron, whose charge is — e,and a positron,charge + e,
are brought close to each other. The two particles may simply disappear, converting themselves into gamma
rays, without any inner electric structure. The net charge is zero both before and after the event so that
charge is conserved. Another example of charge conservation is found in 3-decay.A neutron becomes a
proton and an electron and releases , meanwhile ,a neutron whose charge is zero. The resultant charge is ze-
10 both before and after this decay process . The principle of conservation of electric charge can be stated
as follows:
In any interaction the net algebraic amount of electric charge remains constant .

Conservation of charge has been tested repeatedly in the realm of high-energy physics and has been found

to hold in all circumstances,no exceptions have ever been found.
2. Coulomb’s law

We have known that there is an interacting force between two charged bodies and the force being re-
pel or connect with the kinds of the charge, positive or negative, carried by two bodies . Experiment showed
that magnitude of the force is related to with not only the distance between two charged bodies but also the
shapes and sizes of them.If the sizes of charged bodies are much smaller than their distance, the effect
caused by the charge distribution on the bodies can be ignored. Then the magnitude of the force between
two charged bodies depends only on their distance apart and the net charges. Coulomb’s law holds for
charged bodies whose sizes or spatial dimensions are much smaller than the distance between the bodies.
These charged bodies are called point charges . This means that the electric charge resides on a geometric
point.

Charles Augustin de Coulomb (1736—1806) measured electrical attractions and repulsion quantita-
tively and deduced the law that governs them. He found, utilizing a torsion balance, that the force of at-
traction or repulsion between two point charges is inversely proportional to the square of their distance
apart. The force between charges depends also on the magnitude of the charges. Specifically, it is propor-
tional to their product . The complete expression for the magnitude of the force between two point charges is

p:k"'_rﬁ’z (8-2)

where F is the magnitude of the force exerted on charge g, by charge ¢, separated by a distance r.By
Newton’s third law, this quantity equals the magnitude of the force exerted by charge ¢, on charge ¢, .
The k is a proportionality constant whose magnitude depends on the units in which F, g,,9, and r are

expressed. k is usually written in a more complex way as

1
T 4,

k

(8-3)

& is called the permittivity of vacuum .In SI unit its value tumns out to be
g =8.854187818 x 10°? (C*/N.m’ (84)

We may write the Coulomb’s law in vector form as

F,=-F,= T3 I (8-5)

3



where F, is the force exerted on ¢, by ¢,,r; is a
displacement vector from ¢, to ¢,, F5 which is the
force exerted by ¢, on ¢, is the equal and opposite i Fu /@
Fl2 q
force of F,. Figure 8-1 shows the direction of the ra !
FZI
force of two like or unlike point charges interaction. F= @ G/
It indicate that two like point charge repel and two 9:
unlike point charge attraction, and the force direction Fau
along the line connecting two charges. (a) (5
a
In SI unit system the dimensions of the length,
Fig.8-1
mass, time and current are expressed by L, M, T, '8
. . . (@) Two like point charges repel each other;
I.We can write the dimensions of the charge ¢ and .
s , (b) Two unlike point charges atiract each other.
the permittivity ¢, as IT and FL> T*M ™" by ¢ =

I and Eq.8-4.

§ 8-2 The Electric Field

1. Concept of the electric field

If we place two point charges in the space, Coulomb’s law precisely describes the force between the
electric charges.But Coulomb’s law offers no explanation for the force.To many scientists this situation
was unacceptable . The forces with which they were familiar required contact between interacting objects,
such as the contact of two colliding billiard balls. If a charge experienced a force, they reasoned, then
there should be something acting directly at the location of the charge. We didn’t feel the presence of any
material connection between two point charges. We want to know “why” this is possible—it is an experi-
mental fact that charged bodies behave in this way. The law explains nothing, however, about how one
charge “senses” the distant presence of the other.If the charges are stationary we do not need to raise this
question because we can solve all problems that arise if we know the magnitudes and the positions of
charges. Suppose , however, that one charge suddenly moves a little closer to the second charge . According
to Coulomb’s law, the force on the second charge must increase . Speaking loosely, how does second charge
“know” that the first charge has moved?

It had ever two view to answer above question. One, is called action-at-a-distance point of view, con-
sidered that the force acting between charged bodies was direct and instantaneous interaction . We can rep-
resent this view as

Charge== Charge (8-6)
The other, is called field point of view, considered that there is an electric field as an intermediary be-
tween charges, that is, one charge sets up an electric field in space around itself and that field acts on an-
other charge, producing a force on it. This situation is completely symmetrical , each charge being immersed
in a field associated with the other charge. This view can be represented as
4



Charge=Field= Charge . (8-7)
If the problem was only that of the forces between stationary charges, the field and the action-at-a-distance
point of view would be perfectly equivalent. Suppose , however, that the one point charge suddenly acceler-
ates to the other. How quickly does the still charge leam that other charge has moved and that the force
which it experiences must increase? Field theory predicts that the still charge leams ahout the other’s
motion by field disturbance that emanates from the moving charge, traveling with the speed of light. The
action-at-a-distance point of view requires that information about moving charge’ s acceleration be commu-
nicated instantaneously to the still charge:this is not in accord with experiment.

The electric field,as a kind of matter will bring about an interaction with the charges, and have be-
havior on two hand.One is that electric field exerts a force on the charges in space,and the other is that
electric field do a work on charges during a displacement in the electric field . About the force we will de-
fine the electric field in this segment,and the work done on a charge by electric field will introduce the

conception of the electric potential in section § 8-5.
2. Electric field

(1) Definition of the electric field

To define the electric field, we place a points qof
charge g, ,called the test charge and assumed posi- 7@ T @ 2}’?-—-—
tive for convenience,at a point in space that is to be lqc
examined. If the electric field exists everywhere in
space, this test charge would be exerted by the field (a) (&)
on a force F which can be measured. Experiment
shows that the magnitude and direction of the force @ P_ @ P
depends on the position and magnitude of the g, ,that 90 3¢
indicates the electric field is a vector. Figure 8-2
shows the situation that a force acts on the test charg- () (d)
es which are at the point around a charge called field
source charge, which sets up an electric field in Fig.8-2
space. If the test charge is fixed at a point, then the (a) The test charges are around the field source

rate of the F/q, is a invariable vector which is not charge
(6).(c).(d) The test charges g,,2¢,,3¢, are

. . fixed at P point. The Fiq,,2F/2q,,3F /3¢, are the in-
we can use this rate to represent quantitatively the
variable vector.

relative to the magnitude of the test charge . Therefore

property of the electric field. Thus the electric field,
with a symbol E ,at the point is defined as

F
T
Here E is a vector because F is one, ¢, being a scalar.If the ¢, equals one unity,then E = F . We can

E (8-8)

say that the magnitude of the electric field in a point equals the force exerting on the unity charge at this
point, and the direction of the electric field is the direction of the force when this charge is positive . The

5



SI unit for the electric field is the Newton/Coulomb (N/C) .Its dimension is I"'LMT*.

If the field source charges that set up the electric field that we are examining were fixed in position,
we could use a test charge of any magnitude. If the field source charges are not fixed, however, the test
charge should be as small as possible.Otherwise, it might cause the field source charges to change their
positions . Because charge is quantized, we cannot, of course, use a test charge smaller than the elementary
charge e.

If a point charge ¢ is placed in space in which the electric field E has been known, the force F that
electric field exerts on the point charge is represented by

F = qE (8-9)

The force on a negative charge,such as an electron, is opposite to the direction of the electric field.

(2) The electric field of a point charge

Given a charged object , what electric field does it set up at nearby points? We look first at the case
of a single point charge q,imagine a test charge g, to be place at P.Let r be the vector from the charge
q to the P.The force on the test charge q,,by Coulomb’s law,is

1 99 r
Tdne, P (8-10)

and hence the electric field at P is,from the Eq.8-8.

E=—=-——t—.— (8-11)

Since r/r is a unit vector,the magnitude of E is

= 4rteq r (8-12)
0

If q is positive, the direction of E is the same as that of the vector 7 (away from ¢),and if ¢ is negative,

it is opposite to r (toward ¢) .
3. The Superposition principle of the electric field

If there is a group of charges in space, the resultant electric field E at a given point in space is de-
termined by all these point charges. Placing a test charge ¢, at a given point, we can find the resultant
electric field force exerted on the test charge.Since the force obeys a superposition principle, the electric
field does also. We have

F =F +F, + Fy + - :%’F,
From the definition of the electric field, Eq.8-8, we obtain
F E F
E=£;El =—1;E2=—2;E3=—1;'"
9o 90 90 9o
then yielding
E = El + Ez + E; + o= %Ei (8-13)

The sum is a vector sum, taken over all charges. The E; is the field set up by the ith charge . Eq. (8-13)
is called superposition principle of the electric field.
If a number of point charges q,,¢,,***, ¢, ,are at distances r, ,r,,***,r,** ,from the given point
6



P . The resultant field E is,from the Eq. (8-13) and Eq. (8-11) ,the vector sum of the individual electric
fields, that is

s4 . L (8-14)

47!60 i r T

E =

Example 8-1 Fig.8-3 shows two charges of magnitude ¢ but of opposite sign, separated by a dis-
tance ! . We call this configuration an electric dipole . The vector I, whose magnitude is | and direction
points from — ¢ to + ¢, is called the dipole arm . The product ¢l : which involves intrinsic properties of the
electric dipole, is called the electric dipole moment, and is y
expressed with p ,that is E.

p=4q (8-15) E.
Find the field E due to the dipole of Fig.8-3 at point P, ,a dis-

P,

tance y from the midpoint of the dipole on its central axis,and at a
"
point P,,a distance x along the perpendicular bisector of the —!:l R\\
1
line joining the charges. + 0 NP r
Solution We first calculate the field at point P, . Because

172 -
both the point charges lie on the y axis, the electric field E at _‘_ O,’ - 37

point P, ,and also the field E, and E_ due the separate charg-

es that make up the dipole, must lie along the dipole axis,which Fig-8-3 The field of an electric dipole
we take to be the y axis. The superposition principle applies to electric field so that we can write for the
magnitude of the field at P,

E, =E,-E_=—3%1,_._14

- 2 2
! 4re,r, 4me,rs

— q _ q
Tdme (y - 12)7  dme,(y + 112)°

-2 l -2
45”2[( ——) (1+5) ] (8-16)

Physically , we are usually interested in the electrical effect of a dipole only at distance which is large com-
pared with the dimension of the dipole,that is, at distance such that y>» I.At such a large distance, we
have %(l in Eq.8-16. We can then expend the two quantities in the parentheses in that equation by

the binomial theorem , obtaining

l
B = ey Ly == (=g e)

As an approximate result that holds at large distances, we then have

21 )
E ¢ 2l__gq
A 47reoy Y 2me, y3 +

From the Eq.8-15, we can write the field £ p, in vector form

p
E, =
T 2meyy’

(8-17)



Using the superposition principle, we can write for the vector of the field at P,

E, =E, +E,
where, from Eq.8-11,
1
E,=E,= g .-
47{60 (%)2 +x2

The vector sum of E, and E, point vertically downward and has the magnitude
E, =2E, of cosf = 2E,cosl

where, from Eq.8-3 we have

. n
T ((12)" + )"

Substituting the expressions cosfl and E, into E r, yields

cosl

=1, gl
4re, [(_é_)z_'_xz]sn

P,

If x> 1,we can neglect !/2 in the denominator, and from the Eq.8-15 we write this equation into vector

form

E, = p (8-18)

2 B 2me, %
Eq.8-17 and Eq.8-18 show that,if we measure the electric field of a dipole only at distant points, we can
never find ¢ and ! separately, only their product. The field at distant points would be unchanged if, for ex-

ample, g were doubled and ! simultaneously cut in half.

4. The electric field set up by a continuously distributed charge

An electric charge is actually a collection of discrete charges such as electrons and protons . Howev-
er,when we consider a large number of charges from a large distance away, the distribution of charges ap-
pears to be continuous and we can treat the discrete charges as a continuously distributed change.

Suppose a charged object on which the charge distributes continuously. The field set up at an point
P, shown in Fig.8-4,can be computed by the superposition principle as before.The continuously distrib-
uted charge is regarded as being composed of many infinitesimal elements dq.The field dE due to each
element at the point in question is then calculated, treating the elements as point charges. The field dE is
given by

dE = ATdeZ? L (8-19)
Where r is the vector from the charge element dg to the point P.The resultant field at P is then found

from the superposition principle by integrating the field contributions due to all the charge elements

EzjdEz 1“—3-’ (8-20)

4me, T
The integration, like the sum in Eq.8-13,is a vector operation. We can resolve E into three components

8



4E and the Eq.8-20 becomes three scalar integrations.To evaluate the vector

integral , we evaluate each of the three scalar integrals.

d If we express the volume charge density with p (C/m’),the dq be-
ing the charge distributing in the volume element dV equals the product
pdV.Then Eq.8-20 becomes

E - 41 pdV 1 (8-21)
NEsJw T r

where the integral limit V is the region of all charge distribution. If the
Fig.8-4 The field due to an

charge on the object is spread out on a surface or a line, the charge ele-
element charge dg

ment can be written by dg = ods or dg = Ad!l, where o is the surface
charge density (C/m’) and A is the linear charge density ,and ds is the surface element and dl is the
length element . The Eq.8-20 can be written as

lfdds r IJ'adl r
1

=47reux72—.—r_ or E =4neo 7T (8-22)

Example 8-2 The field of a ring of charge

Fig.8-5 shows a thin ring of radius R:charged to a constant linear charge density A around its cir-
cumference. Find the electric field at point P,a distance z from the plane of the ring along its central ax-
is.

Solution We break up the ring into charge elements that are small enough so that we can treat
them as point charges. We will then find the electric field due to the ring by adding up the field
contributions of all these charge elements.

Consider a differential element of the ring of length d/ located at an arbitrary
position on the ring in Fig.8-5.1t contains an element of charge give by

dg = Adl (8-23) &
This element sets up a differential field dE at point P.We write the magnitude of
dE from Eq.8-19 and Eq.8-23
1 Aadl Adl
dne,  r* T 4me (2 + RY)

dE = (8-24)

Note that all charge elements that make up the ring are the same distance r from

point P.

(L

>
contributions dE made by the differential elements of the ring. From symmetry, we N

To find the resultant field at P we must add up, vectorially, all the field

know that the resultant field E must lie along the axis of the ring. Thus, only the .
Fig.8-5 A uniform

components of dE parallel to this axis need to be counted. Components of dE at ring of charge
right angle to the axis will cancel in pairs, the contribution from a charge element

at any ring location being canceled by the contributiom from the diametrically opposite charge element.
Thus : our vector integral becomes a scalar integral of parallel axial components.

The axial component of dE is d Ecosd . From Fig.8-5 we see that



2

7+ R)™ (8-25)

r4
cosf = — =
.

Combing Eq.8-24 and Eq.8-25,we find

Fig. 8-6 The field
of a charged disk

dE

[—dr

Azdl

Ecos@ = ———F——=35
dEcos dne, (2 + R*)™

(8-26)

Except I is a variable, all other quantities in Eq.8-26 have the same value for all
charge elements. Thus, the integral need only for the dl elements

Az J‘dl _ Az (2nR)
4ne, (22 + R*)™” dre,(z* + R
in which the integral is simply 2n R, the circumference of the ring.But A+ (2rR) is

E = JdE'cosB = (8-27)

q »the total charge on the ring,so that we obtain

Z

_ 8-
dre (2 + R (8-28)

For points far enough away from the ring so that z:% R, we can put R =0 in Eq.
8-28 . Doing so yields

__ 4
dmey 2

which (with z replaced by r) is Eq.8-12. We are not surprised because, at large

enough distance, the ring behaves electrically like a point charge. We note also from Eq.8-28 that £ =0

for z =0.This is also not surprising because a test charge at the center of the ring would be pushed or

pulled equally in all directions in the plane of the ring and would experience no net force.

Example 8-3 The field of a charged disk

Fig.8-6 shows a circular disk of radius R, carrying
a uniform surface charge of density & on its upper sur-
face . Find the electric field at point P,a distance z from P
the disk along its axis.

Solution We divide the disk up into concentric
rings and calculate the electric field by integrating the
contributions of the various rings. Fig. 8-6 shows a flat P S Y W RN/
ring with radius r and of width dr, its total charge being ——lj' 4»-%

where (2n7)dr is the differential area of the ring. We

dg =o(2nr)dr

Fig.8-7 The field of a line of charge

have already solved the problem of the electric field due

to a ring of charge.Substituting d¢ for ¢ in Eq.8-28,and replacing R in Eq.8-28 by r,we obtain

dE = zdgq _ azrdr
dre (22 + P Y% 7 2e,(27 + 1)

Now we can find E by integrating over the surface of the disk, that is, by integrating with respect to the

variable r.Note that z remains constant during this process.Thus
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