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Preface

In the last few years the horizons of nuclear magnetic
resonance spectroscopy have all but been pushed out of
sight as new and ever more sophisticated instruments are
built and reports of new applications flood the literature.

For chemists who are active developers of the science,
in whatever aspect, it is difficult merely to read all of the
new publications. For chemists who use the method,
among other methods, to solve their chemical problems
it is well-nigh impossible to keep up to date.

This book is an attempt to introduce NMR to a wide
audience of users, in such a cohesive way that all of its
potential can be tapped and exploited: it is not a book
about the physics and mathematics of NMR, but con-
cerns the interpretation of NMR spectra by those who
do not consider themselves particularly mathematical by
inclination: the minimum prerequisites are some know-
ledge of general spectroscopic principles and a familiarity
with the chemical properties of common functional
classes.

Clear non-mathematical pictures of magnetic reson-
ance must inevitably be distortions of more fundamental
laws, but a worthwhile sacrifice is made in forming a
bridge between physics and chemical application. The
book is obviously not monographic in style or depth,
but it will serve its intent if, having read it, the reader is
thereby equipped and encouraged to tackle the neces-
sarily more rigorous specialist works.

The emphasis is multinuclear, with a deliberate
attempt being made to demystify the NMR studies of
the less common NMR elements. Likewise, Fourier

transforms and superconducting magnets are introduced
very eatly, and are not given any special status as ‘recent
developments’: continuous wave spectrometers are not
referred to as ‘conventional’, and the use of the terms
upfield and downfield is minimised for the same peda-
gogic reasons (being replaced by lower frequency and
higher frequency respectively).

The problem of order of presentation, of finding a
beginning, a middle and an end, is not unique to the
- study of NMR: the chapter sequence adopted should not
therefore be taken as a recommended learning programme,

but merely as an approximate indicator of the way in
which most teachers introduce the subject, building
upon the familiar to construct a framework of advanced
understanding.

Chapter 1 is set at the most elementary conceptual
level, and is an obligatory launching point for the multi-
nuclear approach.

Chapter 4 (on proton NMR) and chapter 5 (on
carbon-13 NMR) form the mainstay of the subject; some
teachers begin with proton while others begin with
carbon-13. Surprisingly little theory is needed 1o inter-
pret such spectra: for this reason, while chapter 2 is
fairly full in explanation, most students will tend to
attack this chapter in several short sorties, as the need
to know becomes more expansive. The same is true of
the instrument details given in chapter 3 which, while
fairly detailed and self-contained, can profitably be
absorbed in separate parts at different times.

The set of chapters 2, 3, 4 and 5 completes a study of
NMR to intermediate level.

Chapters 6 and 7 interrelate with each other at the
next most advanced conceptual level: here are introduced
the theories and practice made accessible only by micro-
processor controlled instrumentation. An argument can
be made for introducing some of the chapter 6 theory at
an earlier stage, and of course this is not precluded: but
there is a strong case to be adduced for consolidating the
basic applications in the early chapters before tackling
the three-dimensional complexities of the rotating frames
of reference, with all the perceptual traps involved.

The study of dynamic molecular processes by NMR is
treated separately in chapter 8. Some of the simpler ideas
of dynamic NMR are, however, interspersed in the earlier
chapters, since to gather them all in a late chapter would
be artificial and distorting. .

Chapters 9-13 are all selfsufficient to a degree, and
are the barest indications, by example, of the kind of
information contained in the NMR spectra of a selection
of other nuclei. Given the multinuclear treatment of the
earlier chapters, there is no need here for extensive detail.

Chapter 14 very much embodies two personal views.



xii

Many details of physics are easily forgotten (or may not
" have been learnt) and having them gathered together
-serves as a useful aide-memoire for non-physicists. We
also often learn nothing about the people who helped to
assemble the enormous construct of science, and the
_ sparse biographical notes given here on a few of the
* famous names in NMR may whet an appetite or two.
' Although informative data are supplied as necessary
throughout the book, chapter 15 contains a large amount
of reference data, which can be accessed for systematic
. or detailed needs. Extensive tables of chemical shifts,
* coupling constants and relaxation times are gathered
here, with details of common NMR solvents.

There are many problem examples throughout the
book. It has been established that one major reason for
lack of success in problem solving is an inability to collect
and identify only that information which is necessary

PREFACE

for solution. In an endeavour to side-step this difficulty,
most of the problem examples are preceded by worked
examples, so-that confidence will rise through knowing
which method to apply. Most problems are also seen
within the context of the learning objectives under dis-
cussion (although other problem examples test more
comprehensive understanding).

While it is demonstrably possible to interpret many
NMR spectra without intimate study of theory or of
spectrometer operation, hopefully the presentation of
the subject matter in this book will stimulate an intellec-
tual curiosity, such that a spectrum can be interpreted in
the morning, and explained in the afternoon. If the book
fulfils its purpose, the user will go back the following
morning for more. There is always another experiment
to be done.

Heriot-Watt University, Edinburgh w.K
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Introduction to Nuclear
Magnetic Resonance — NMR

NMR signal from the aldehyde proton in acetaldehyde (CH3; CHO)




This chapter presents an overview of the NMR experi-

- ment and the chemical information which it can provide;

.it will not be essential reading for those who have

4 previously met the basics of the technique, but for others

-4t will supply a perspective which would be lacking if the
- beginnings were treated too rigorously.

- 1.1 THE PRINCIPLES OF NMR SPECTROSCOPY

The atomic nuclei of many elements are magnetic because
they are charged and because they behave as if they were
spinning. We can investigate this magnetic property by
studying the way in which these nuclei interact with an
externally applied magnetic field, Bo. Typical magnetic
‘nuclei are those of hydrogen (*H), carbon (the 13C iso-
tope only), nitrogen (**N and !*N), oxygen (*”O only),
fluorine (*°F), and phosphorus (*'P).

The simplest case is exemplified by the nucleus of

Place in the

magnetic field
BO

NMR IN CHEMISTRY

tions which result in two different orientations being
allowed — either aligned with the field or opposed. to
the field. These two orientations clearly have different
énergies, the aligned position being of lower energy than
the opposed.

Whenever an external magnetic field is present,
some of the nuclei in the sample become aligned
(adopt the lower energy configuration) while others
become opposed (adopt the higher energy con-
figuration). :

The situation is summarised in figure 1.1.

The energy difference (AE) between the two nuclear
configurations corresponds to a particular, precise
electromagnetic frequency since, by the Bohr relation-
ship, AE = hv. These energy relationships are illustrated
in figure 1.2. To take a specific example, if the external
magnetic field strength is 2.35 tesla (T), then the energy
gap (AE) for the hydrogen nucleus is approximately

.

Magnet’

Figure 1.1 In the absence of the field Bo, the magnetic nuclei in the sample are oriented randomly. In the magnetic

field, they must adopt either the aligned . .ientation (of loyver energy) or the opp

hydrogen (the proton) and also by ‘the nucleus of -

carbon-13 (*>C). These nuclei behave liké bar magnets in
an applied field, and in the manner of compass ngedies
tend to-align themselves along the same direction as the
field. Unlike bar magnets and compass needles however,
which always come to rest aligned with the field, mag-
netic nuclei such as *H and '*C have quantum restric-

osed orientation (of higher energy)

6.6 x 1072 J, and the corresponding frequency (v) is
100 MHz (lying in the radiofrequency (RF) band of the
electromagnetic spectrum). For '*C nuclei in the same
magnetic field, the energy gap (AE) is 1.7 x 1072¢ J,
and the frequency » = 25 MHz.

If a sample containing 'H nuclei is placed in such a
magnetic field, and the sample then irradiated with the
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Figure 1.2 In the absence of B, the magnetic nuclei all
have the same energy. When B, is applied,
the aligned and opposed orientations corres-
pond to different energies, the energy

difference, AE, having the dimension hv

correct radiofrequency, we find that the nuclei interact
with the radiofrequency.

. Some of the lower-energy nuclei absmjb‘radiation and

move up to the higher-energy state: that is, they undergo

a transition from being aligned with the field to become
opposed to the field. At the same time, some of the
higher-energy nuclei.are stimulated to emit energy, and
they therefore change their opposed orientation and
become aligned with-the field.

AHE

*

These transitions will only arise when the magnetic .
energy gap between the nuclear energy levels is matched .
exactly with the incoming radiofrequency, that is, when
they are ‘in resonance’, and AE = hv. The process can be |
pictured as in figure 1.3.

In Table 1.1 are listed a few important nuclei, with
the corresponding RF energy necessary to bring about
the nuclear magnetic resonance condition and to stimu-
late transitions among the available magnetic energy
levels. (For more comprehensive details see the Appen-
dix at the back of the book.) -

.The study of nuclear magnetic resonance (NMR) is
concerned with these energy levels, and with the ffe-
quency of radiation absorbed during resonance.

1.2 THE NMR SPECTROMETER

A primitive lay-out for an NMR instrument is shown in
figure 1.4, With a magnetic field strength of 2.35 T.
Assuming that the sample contains carbon and hydrogen,
then the 'C nuclei will be partitioned between their
two allowed energy levels (1.7 x 10™2® J apart); like-
wise the protons will be partitioned between their two
allowed energy levels (6.6 x 10~3¢ J apart).

With the RF transmitter/receiver tuned to 25 MHz,
the *3C nuclei will undergo upward and downward
transitions between the levels and this resonance
condition will be detected by observing the absorp-

tion of radiofrequency power. -

Irradiation with radiofrequency energy

Figure 1.3 When' the nuclej'(in the magnetic field) are irradiated with radiofrequency energy of the appropriate
frequency, some of them undergo transitions from the aligned to the opposed orientations and vice versa
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Table 1.1 Common magnetic nuclei. The values shown
for AE (in joules) and for v (in MHz, 10% s™")
are for nuclei in a magnetic field of 2.35 T
Nucleus Natural abundance (%) ForB,=235T
AE[) v/MHz
'H 99.98 6.6 X107%¢ 100
13C 1.1 1.7 Xx1073%¢ 25
19F 100 6.2 x10™2¢ 94
31p 100 2.7 X1073%¢ 40.5
14N 99.63 0.5 x107%¢ 1
1SN 0.37 0.6 x1072¢ 10
170 0.037 0.9 X 10%¢ 13.5

Tuned to 100 MHz, the instrument will again record the
absorption of RF power, this time because the protons
are in resonance and undergoing transitions. The spectro-
meter will detect '°F at 94 MHz and 3'P at 40.5 MHz,
and so on.

By convention, the static magnetic field of the instru-
ment is labelled By, and the RF electromagnetic field is
labelled B, .

1.3 CHEMICAL SHIFTS : )

Not all protons resonate at exactly 100 MHz in this
instrument. Protons attached to carbon atoms for ex-

in glass tube

Magnet

ample are surrounded by different electron densities
compared with those attached to oxygen or nitrogen
atoms; this affects their magnetic susceptibilities.

Depending on their chemical environment the
precise resonance frequency will be shifted from
100 MHz by a few parts per million; we name this
phenomenon chemical shift, and it is the most
important reason for the development of NMR as
a routine and powerful analytical technique in
chemistry. '

For a simple organic molecule like tert-butyl alcohol
(see figure 1.5) there are protons in two different chemi-
cal environments — nine of them are in methyl groups
and one is attached to oxygen. The nine methyl protons
come to resonance about 130 Hz higher in frequency
than 100 MHz (that is, about 1.3 parts per million to
higher frequency) and the OH proton absorbs at about
400 Hz (about 4 ppm) higher frequency than 100 MHz.

Figure 1.5 is the proton magnetic resonance spec-
trum (*H NMR spectrum) for tert-butyl alcohol; it
is essentially a plot of RF. absorption against
frequency. .

Note that the integrated area of the larger peak (for
the methyl protons) is nine times that of the smaller
(OH) signal; in other words

Figure 1.4 Nuclear magnetic resonance spectrometer. The sample is placed in the magnetic field; when the radio-
frequency transmitter is tuned to the resonance frequency, a signal arises in the receiver
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- Figure 1.5 Chemicai shift. In the proton magnetic resonance spectrum (*H NMR spectrum) of fert-butyl alcohol,
the nine methyl protons give a signal 1.3 ppm higher in frequency than 100 MHz. The hydroxyl proton

signal is.about 4.0 ppm higher than 100 MHz. T

Signal intensity is proportional to the number of
protons present in each of the chemical environ-
ments within the molecuyle.

Figure 1.6 is the carbon-13 NMR spectrum for tert-
butyl alcohol. Again, since there are only two different
kinds of carbon atom in the molecule (the three €H,
carbons'and the C—OH carbon) each comes to resonance,
not at 25 MHz, but chemically shifted so that the CH,
carbons give a signal about 750 Hz higher in frequency,

he field strength for this 100 MHz proton NMR spectrum
is235T ' :

and the C—OH carbon signal appears around 1750 Hz
higher in frequency. Note again that the signals are of
different intensity; for reasons that we shall meet later,
it is not as easy in '*C NMR to treat these intensities
quantitatively.

The carbon-12 isotopes in the sample of fert-butyl
alcohol make no contribution to this spectrum since
they are non-magnetic; the fact that only 1.1 per cent of
the carbon atoms are '3C (see table 1.1) makes the
carbor-13- NMR spectrum more difficult to record than
the proton spectrum. A glance at table 1.1 shows that

CH,
CH,-CI—OH 13C NMR spectrum of rert-butyl alcohol 750 Hz
* CH, l 30 ppm ]
’ . 3 carbons

+

1750 Hz

1 carbon

70 ppm

25 MHz

Increasing freq y

_Figure 1.6 C_hemical shift. In the routine carbon-13 NMR spectrum of tert-butyl alcohol, the three methy) carbons
give a signal 30 ppm higher in frequency than 25 MHz. The C—O signal is 70 ppm higher than 25 MHz.
: The ficld strength for this 25 MHz '*C NMR spectrum is 2.35 T-
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1SN spectra are even more difficult to obtain, with a
natural abundance of only 0.37 per cent, and that !0 is
exceedingly rare; *°F and 3'P NMR spectra in contrast
are relatively easily recorded.

Worked Example 1.1

For the molecule of methyl acetate (methyl ethanoate)
CH;COOCH;, (a) state how many different chemical
shift environments exist for the hydrogen, carbon and
oxygen nuclei, (b) note from table 1.1 the natural abun-
dance of each principal magnetic isotope and (c) state
the frequency at which each NMR spectrum would be
recorded in a spectrometer with a 2.35 T magnet.

Answer 1.1

There are two chemically distinctive hydrogen environ-
ments: the natural abundance of the most important
hydrogen isotope ('H) is 99.98 per cent, and the spect-
rum would be recorded at 100 MHz and 2.35 T. There
are three carbon environments: carbon-13 abundance is
only 1.1 per cent, and the required - frequency (for
2.35,T) is 25 MHz. (Carbon-12 is non-magnetic and does
not exhibit NMR.) There are also two oxygen environ-
ments; oxygen-17 NMR at natural abundance is handi-
capped by the very low natural abundance (0.037 per
cent) but oxygen-17 NMR spectra are acquired at
13.5 MHz in a 2.35 T instrument. (Oxygen-16 is non-

~ magnetic and does not exhibit NMR.)

Problem Example 1.1

Formula 1.1 is an imaginary ‘isotope isomer’ or isotopo-
mer of acetamide. In a 2.35 T magnet, state the frequen-
cies at which the NMR spectrum of each element would
be recorded. For each spectrum, state how many signals
(that is, chemical shift positions) would be seen. (Detail:
because of restricted rotation around the C—N bond,
consider -the protons on nitrogen to be in different
environments, one being nearer to oxygen than the
other.)

_—“(—-—‘——C

-

B3CH, — 13¢C - (1.1

1.4 FIELD STRENGTH AND FREQUENCY

Figure 1.2 and table 1.1 show that magnetic nuclei can
occupy various magnetic subleveis, and that the frequency
necessary to cause nuclear transitions is different for
each element or isotope. This wesonance frequency is
found to vary in direct proportion to the applied field
(for all magnetic nuclei); thus the larger the magnetic
field the higher the frequency necessary to achieve
resonance. That is

Uano

For the proton we can represent this fact as in
figure 1.7.

Although the arithmetic of these ﬁeld-frequency
relationships is simple, a few examples will help-to
emphasise their crucial importance.

Worked Exarnple 1.2

What is the frequency needed to mduce transitions
between the '3C nuclear energy levels, when the field
strength is (a) 4.7 T and (b) 1.88 T?

Answer 1.2

Since from table 1.1 the !3C NMR frequency is 25 MHz
at 2.35 T, then by simple proportion it is 50 MHz at
47Tand 20 MHz at 1.88 T.

Problem Example 1.2
What field strength is necessary in an instrument designed
for studying proton NMR at (a) 60 MHz, (b) 200 MHz,

{c) 600 MHz?
r_
‘E —4

018 T 07T 14T
7.8 MHz 30 MHz 60 MHz 100 MHz 47T
fl g;v;‘lh flhgdal;m" 200 MHz 70T
) 300 MHz
14T
600 MHz

Figure 1.7 Field-field relationship. The energy gaps (AE = hv)-are shown for protons in different field strengths.
For other elements the same simple proportion holds; table 1. 1 lists frequencies for a field strength of

235T



