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Preface

The IAS/Park City Mathematics Institute (PCMI) was founded in 1991 as part
of the Regional Geometry Institute initiative of the National Science Foundation.
In mid-1993 the program found an institutional home at the Institute for Ad-
vanced Study (IAS) in Princeton, New Jersey.

The IAS/Park City Mathematics Institute encourages both research and educa-
tion in mathematics and fosters interaction between the two. The three-week sum-
mer institute offers programs for researchers and postdoctoral scholars, graduate
students, undergraduate students, high school students, undergraduate faculty,
K-12 teachers, and international teachers and education researchers. The Teacher
Leadership Program also includes weekend workshops and other activities dur-
ing the academic year.

One of PCMI’s main goals is to make all of the participants aware of the full
range of activities that occur in research, mathematics training and mathematics
education: the intention is to involve professional mathematicians in education
and to bring current concepts in mathematics to the attention of educators. To
that end, late afternoons during the summer institute are devoted to seminars and
discussions of common interest to all participants, meant to encourage interaction
among the various groups. Many deal with current issues in education: others
treat mathematical topics at a level which encourages broad participation.

Each year the Research Program and Graduate Summer School focuses on a
different mathematical area, chosen to represent some major thread of current
mathematical interest. Activities in the Undergraduate Summer School and Un-
dergraduate Faculty Program are also linked to this topic, the better to encourage
interaction between participants at all levels. Lecture notes from the Graduate
Summer School are published each year in this series. The prior volumes are:

e Volume 1: Geometry and Quantum Field Theory (1991)

e Volume 2: Nonlinear Partial Differential Equations in Differential Geometry
(1992)

e Volume 3: Complex Algebraic Geometry (1993)

e Volume 4: Gauge Theory and the Topology of Four-Manifolds (1994)

e Volume 5: Hyperbolic Equations and Frequency Interactions (1995)

e Volume 6: Probability Theory and Applications (1996)

e Volume 7: Symplectic Geometry and Topology (1997)

o Volume 8: Representation Theory of Lie Groups (1998)

e Volume 9: Arithmetic Algebraic Geometry (1999)
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Computational Complexity Theory (2000)
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The American Mathematical Society publishes material from the Undergradu-
ate Summer School in their Student Mathematical Library and from the Teacher

Leadership Program in the series IAS/PCMI—The Teacher Program.

After more than 25 years, PCMI retains its intellectual vitality and continues

to draw a remarkable group of participants each year from across the entire spec-
trum of mathematics, from Fields Medalists to elementary school teachers.

Rafe Mazzeo
PCMI Director
March 2017
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Introduction

Roman Bezrukavnikov, Alexander Braverman, and Zhiwei Yun

The 2015 Park City Mathematics Institute program on “Geometry of moduli
spaces and representation theory” was devoted to a combination of interrelated
topics in algebraic geometry, topology of algebraic varieties and representation
theory.

Geometric representation theory is a young but fast developing research area
at the intersection of the those subjects. An early profound achievement was the
formulation, in the late 70’s, of Kazhdan and Lusztig’s famous conjecture on char-
acters of highest weight modules over a complex semi-simple Lie algebra, and its
subsequent proof by Beilinson-Bernstein and Brylinski-Kashiwara. Two remark-
able features of this proof have inspired much of subsequent development: intri-
cate algebraic data turned out to be encoded in topological invariants of singular
geometric spaces, while proving this fact required deep genetal theorems from
algebraic geometry. The topological invariants in question have to do with in-
tersection cohomology of Schubert varieties, while the key algebro-geometric result
used in the proof is a generalization of Weil’s conjecture by Beilinson, Bernstein
and Deligne involving perverse sheaves.

The geometric spaces appearing in the Kazhdan-Lusztig conjectures are closed
subvarieties in the flag variety, a homogeneous space which is a basic ingredient
in the theory of algebraic groups. A later major direction in geometric represen-
tation theory, shaped by contributions of Lusztig, Nakajima and others, develops
a similar relation between representation theory and moduli spaces of linear al-
gebra data (quiver varieties).

More intricate geometric objects have entered the subject with the emergence
of the geometric Langlands program. This direction, pioneered by Beilinson and
Drinfeld in the 90’s, is partly inspired by Langlands’ conjectural nonabelian reci-
procity laws from number theory. In the last decade, Kapustin and Witten have
discovered its close connection to S-duality in quantum field theory. While em-
ploying some of the techniques of Kazhdan-Lusztig theory, geometric Langlands
duality deals with more sophisticated geometric spaces, such as the moduli space
(or stack) of principal bundles on a complete algebraic curve and its local coun-
terpart, the affine Grassmannian, also known as the loop Grassmannian. A large
part of the PCMI program was devoted to introducing this circle of ideas.

Another focus of the program was on some aspects of enumerative algebraic
geometry. Recent progress in that area has been increasingly bringing to light

©2017 American Mathematical Society
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the role of Lie theoretic structures in problems such as calculation of (equivari-
ant) quantum cohomology, K-theory etc. Although the motivation and technical
background of these constructions is quite different from that of geometric Lang-
lands duality, both theories deal with topological invariants of moduli spaces of
maps from a target of complex dimension one. Thus they are at least heuristically
related, while several recent works indicate possible strong technical connections.

The goal of the program was to provide an introduction to these areas of active
research and promote interaction between the two related directions. Our hope is
that this will help to write a new chapter in the glorious history of the interaction
between representation theory and algebraic geometry. Just as D-modules, per-
verse sheaves and the generalizations of Weil’s conjecture have become standard
tools in studying many algebraic questions in representation theory, we hope that
keys to resolving other outstanding questions may lie in the recent techniques of
enumerative algebraic geometry

The program included minicourses by Alexander Braverman, Mark de Cataldo,
Victor Ginzburg, Davesh Maulik, Hiraku Nakajima, Xinwen Zhu, Zhiwei Yun,
and Clay Scholars Ngo Biao Chau and Andrei Okounkov. This volume contains
contributions by Mark de Cataldo, Hiraku Nakajima, Ngo Bio Chéau, Andrei
Okounkov, Xinwen Zhu and Zhiwei Yun.
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Introduction

Goal of the lectures. The goal of these lectures is to introduce the novice to the
use of perverse sheaves in complex algebraic geometry and to what is perhaps the
deepest known fact relating the homological invariants of the source and target of
a proper map of complex algebraic varieties, namely the decomposition theorem.

Notation. A variety is a complex algebraic variety, which we do not assume
to be irreducible, nor reduced. We work with cohomology with Q-coefficients
as Z-coefficients do not fit well in our story. As we rarely focus on a single co-
homological degree, for the most part we consider the total, graded cohomology
groups, which we denote by H*(X, Q).

Bibliographical references. The main reference is the survey [19] and the
extensive bibliography contained in it, most of which is not reproduced here.
This allowed me to try to minimize the continuous distractions related to the
peeling apart of the various versions of the results and of the attributions. The
reader may also consult the discussions in [18] that did not make it into the very
different final version [19].

Style of the lectures and of the lecture notes. I hope to deliver my lectures in
a rather informal style. I plan to introduce some main ideas, followed by what I
believe to be a striking application, often with an idea of proof. The lecture notes
are not intended to replace in any way the existing literature on the subject, they
are a mere amplification of what I can possibly touch upon during the five one-
hour lectures. As it is usual when meeting a new concept, the theorems and the
applications are very important, but I also believe that working with examples,
no matter how lowly they may seem, can be truly illuminating and useful in
building one’s own local and global picture. Because of the time factor, I cannot
possibly fit many of these examples in the flow of the lectures. This is why there
are plenty of exercises, which are not just about examples, but at times deal head-
on with actual important theorems. I could have laid-out several more exercises
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(you can look at my lecture notes [22], or at my little book [9] for more exercises),
but I tried to choose ones that would complement well the lectures; too much of
anything is not a good thing anyway.

What is missing from these lectures? A lot! Two related topics come to
mind: vanishing/nearby cycles and constructions of perverse sheaves; see the
survey [19] for a quick introduction to both. To compound this infamy, there is
no discussion of the equivariant picture [3].

An afterthought. The 2015 PCMI is now over. Even though | have been away
from Mikki, Caterina, Amelie (Amie!) and Dylan for three weeks, my PCMI
experience has been wonderful. If you love math, then you should consider par-
ticipating in future PCMIs. Now, let us get to Lecture 1.

Lecture 1: The decomposition theorem

Summary of Lecture 1. Deligne’s theorem on the degeneration of the Leray spectral
sequence for smooth projective maps; this is the 1968 prototype of the 1982 decomposition
theorem. Application, via the use of the theory of mixed Hodge structures, to the global in-
variant cycle theorem, a remarkable topological property enjoyed by families of projective
manifolds and compactifications of their total spaces. The main theorem of these lectures,
the decomposition theorem, stated in cohomology. Application to a proof of the local in-
variant cycle theorem, another remarkable topological property concerning degenerations
of families of projective manifolds. Deligne’s theorem, including semi-simplicity of the di-
rect image sheaves, in the derived category. The decomposition theorem: the direct image
complex splits in the derived category into a direct sum of shifted and twisted intersection
complexes supported on the target of a proper map.

1.1. Deligne’s theorem in cohomology
Let us start with a warm-up: the Kiinneth formula and a question.
Let Y, F be varieties. Then

(1.1.1) H* (Y x F,Q) = @G H*9(Y,Q) @ HI(F,Q).

q=0
Note that the restriction map H*(Y x F,Q) — H*(F, Q) is surjective. This surjec-
tivity fails in the context of (differentiable) fiber bundles: take the Hopf fibration
b:S3 - §2 (cf. Exercise 1.7.2), for example. It is a remarkable fact that, in the
context of algebraic geometry, one has indeed this surjectivity property, and more.
Let us start discussing this phenomenon by asking the following

Question 1.1.2. Lef f : X — Y be a family of projective manifolds. What can we say
about the restriction maps H* (X, Q) — H*(f‘l(y),Q)? Let X be a projective mani-
fold completing X (i.e. X is open and Zariski-dense in X). What can we say about the
restriction maps H*(X,Q) — H*(f~1(y),Q)?
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Answer: The answers are given, respectively, by (1.2.1) and by the global in-
variant cycle Theorem 1.2.2. Both rely on Deligne’s Theorem, which we review
next.

The decomposition theorem has an important precursor in Deligne’s theorem,
which can be viewed as the decomposition theorem in the absence of singularities
of the domain, of the target and of the map. We start by stating the cohomological
version of his theorem.

Theorem 1.1.3. (Blanchard-Deligne 1968 theorem in cohomology [24]) For any
smooth projective map' f : X — Y of algebraic manifolds, there is an isomorphism
(1.1.4) H*(X,Q) = @ H* 9(Y,R.Qx),

q>0
where R, Qx denotes the q-th direct image sheaf of the sheaf Qx via the morphism f; see
§1.2. More precisely, the Leray spectral sequence (see §1.7) of the map f is Ex-degenerate.

Proof. Exercise 1.7.3 guides you through Deligne’s classical trick (the Deligne-
Lefschetz criterion) of using the hard Lefschetz theorem on the fibers to force the
triviality of the differentials of the Leray spectral sequence. a

Compare (1.1.1) and (1.1.4): both present cohomological shifts; both express
the cohomology of the L.h.s. via cohomology groups on Y; in the former case, we
have cohomology with constant coefficients; in the latter, and this is an important
distinction, we have cohomology with locally constant coefficients.

Deligne’s theorem is central in the study of the topology of algebraic varieties.
Let us discuss one striking application of this result: the global invariant cycle
theorem.

1.2. The global invariant cycle theorem

Let f : X — Y be a smooth and projective map of algebraic manifolds, let
j : X — X be an open immersion into a projective manifold and let y € Y. What are
the images of H*(X, Q) and H*(X, Q) via the restriction maps into H*(f*l(y),Q]?
The answer is the global invariant cycle Theorem 1.2.2 below.

The direct image sheaf R9 := R9f,Qx on Y is the sheaf associated with the
pre-sheaf

U~ HI(F1(U),Q).

In view of Ehresmann’s lemma, the proper? submersion f is a C* fiber bundle.
The sheaf R9 is then locally constant with stalk

R =HI(f ! (y),Q).

The fundamental group 7 (Y, y) acts via linear transformations on R{}: pick a loop

y(t) at y and use a trivialization of the bundle along the loop to move vectors in

q

e lE) back to IRS (monodromy action for the locally constant sheaf R9).

Ry along R

'Smooth: submersion; projective: factors as X — Y x P — Y (closed embedding, projection).
7 . . - w s » . -
“Proper := the pre-image of compact is compact; it is the “relative” version of compactness.



