@_ Springer

- N e okt

SOFTWARE

ENGINEERING 1
ABSTRACTION AND MODELLING

Dines Bjorner =

ATERFE MRt

KFHENHTENFLBM AT (R WM

Software Engineering 1
Abstraction and Modelling

RETE #1

jHE ESFE L

mEXFH R
=

English reprint edition copyright © 2007 by Springer;Verlag and TSINGHUA UNIVERSITY PRESS.

Original English language title: Software Engineering 1: Abstraction and Modelling by Dines Bjerner,
Copyright © 2006 Springer Science + Business Media, Inc.
All Rights Reserved.

This edition has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in the People’s
Republic of China only and not for export therefrom.

AR ENRR i Springer-Verlag AU T H K R tH AR RAT .
ERTRBUREENERIEES EF 01-2007-0349 5

EBHELA FEXFHEHBABAIRE, TRTERBHEE.
MEWLETE, B R. EINEEREBIE: 010-62782989 13501256678 13801310933

EH LR B (CIP) &R

RETE % 1. R 5EE =Software Engineering 1: Abstration and Modeling: 3 / (Ff}) L&
(Bjorner, D.) #F. —RHHA. —Jbm: WHEHKFEHR, 20077

(RFWTENBEEIZE LB RTD

ISBN 978-7-302-15428-0

I. % 1. the I BAETE—REFER—HM—EX V. TP311.5
T E R A B B CIP i (2007) B 086860 5

H RE &: HERFHBRAL o b JEREEREFEHARE
http:// www.tup.com.cn 1 4%: 100084
c-service@tup.tsinghua.edu.cn
it 2 M. 010-62770175 R 010- 62786544
& 010-62772015 EFRE: 010-62776969

B Rl &: dbtRFERE

¥ 1T &: ZHHESTHNERTRAF

% 1T &: 2EFEHE

F A&: 185X230 ENK: 475

BE R 20074E7 HEB 1R 2007 4E7 A5 1 REIRY

B #: 1~3000

E ffr: 79.00 T

APBMAEELFERE. BE. B, AR, BRRZNERER B, & S5FEKE R H R
RifA%. BEZRHEIE: 010-62770177 ¥ 3103 FERES: 023295-01

i e B

BN 21 A, HFFERSF. BRUAGEENKNEFRENE. RFHT0E
BERMAA MRS, EHTRKERERNAL, EREESFTREMS. HEHT, FH
EFREERAANEL, DAZIEREN. BiRESEEEOHEM EFHRE, H7T R
MR EFE, BHBEEXNRERE SR ESNRREA .

BHERFEHRAEN 1996 EHF4h, SESFZBHRATSGE, BEBRT “XETHH
HEMYE GLERD” F—RI5IHEE, ZREAEREORENSHEF. BA 21 L, &
AHABREARSEEEMERMSOVE, EOHEOERME, E b KEERE, SEE8
BHAERY, —mBAEMEEXERXREEATREGREP A RETHNHEF ORI
PR RE LB, HREE “REFEHHFTESIZELEM RS GEEBO”, UBERE.
RUIABHEE KA A RFIBEM IR R B R RBEBA. ERFEEALTE. HERR
] BATHE R RSN EALEE IR H B, URIBRAHE“ R EZ T EHEE B E 2B RS G
ETRRD” WAL, HEARBITERTE.

HHEREFE DR

B X F

& B SRR RERERE T8 M. WAENENNRA. UWAZHFYE. FRE
A IHE R ARG RARFIROKMEE. B 1969 4 NATO & E K
R “HRHETRE” Rk, BELREDHA T —I1%%t. IEEE # SWEBOK Fl SEEK, LI
K ACM/IEEE Wt 872 2005 M4k ki, FrEERGTRNERNRELHEZ L ERM
05 .

BHRRUTF R ER RS TR EREHR, $XTRETERERBENRZ LR 2N
%, WINAHRIFRAIFE, LeRM4 K EEIRR . Dines Bjorner HIZFTE K (BRI TR & 1~
3) REMNET RERRMTFRITE, BEEEEM. AR5, B4,
S T KT AR AR R B A . AN WA R AL T VEBEAT A T RRAT T e
AR . Dines R4 TRMSMNEL LR, £EFLH VDM JiEH RAISE ikl
#2Z—, BRI R 7 i3 K A Tl 5700 5 F (9 58 Y STk RIMB S 4 A T 3Ri ACM
Fellow # IEEE Fellow. XABEMKIHAMELERNBENRE, ABXFEE, BLE4F
HeBt TRARTERH.

RENTEE (R TEY (B 1~3) WA P XA TR, MERZHE,
REMEF, URKH.

M K BE
THERE

Preface — to Vols. 1-3

This preface covers the three volumes of Software Engineering, of which this
volume is the first.

e Software engineering — art/discipline/craft/science/logic: Soft-
ware engineering is the art [326-328), discipline [194], craft [441], sci-
ence [245], logic [275] and practice [276] of
* synthesizing (i.e., building, constructing) software, i.e., technology,

based on scientific insight, and
* analysing (i.e., studying, investigating) existing software technology
in order to ascertain and discover its possible scientific content.

To succeed in this,

e Software engineering — abstraction and specification: Software
engineering makes use of abstraction and specification.

* Abstraction is used to segment development into manageable parts,
from high-level abstractions in phases, stages and steps to low-level
abstractions, i.e., concretisations.

* Specification records and relates all levels of abstraction.

Volumes 1 and 2 of the three-volume book cover abstraction and specification
in detail. :

e Software engineering — the triptych: Software engineering composes

analysis of application domains with synthesis and analysis of requirements

(to new software) into design (i.e., synthesis and analysis) of that software.

Hence software engineering consists of

* domain engineering, which, as these volumes will show you, is a rich
field of many disciplines, etc.,

* requirements engineering, which, as we shall again see, in these
volumes, has many aspects and facets not usually covered in textbooks,
and

VIII Preface — to Vols. 1-3

* software design, with concerns of software architecture, component
composition and design, and so on.

Volume 3 of the book covers this triptych in detail.

e Software engineering — practical concerns: Software engineering,
besides, consists of many practical concerns: Project and product man-
agement; principles, techniques and tools for making sure that groups of
possibly geographically widely located people work effectively together, for
choosing, adapting, monitoring and controlling work according to one of
a variety of development process models; planning, scheduling and allo-
cating development resources (people, materials, monies and time); and
related matters, including cost estimation, legacy systems, legalities, etc.

We shall not be covering these management-oriented facets of software engi-
neering in this book.

Each chapter of this volume and its companion volumes starts with a synopsis.
An example — relevant for this preface — follows:

e Assumptions: You have taken this book into your hands since you are

interested in knowing about, and possibly learning a new approach to
_software engineering.

e Aims: The main aim of these volumes is to introduce you to a new way
of looking at software: One that emphasises (I) that software engineering
is part of informatics, and that informatics is a discipline otherwise based
on (i) mathematics, (ii) the computer & computing sciences, (iii) linguis-
tics, (iv) the availability of the hard information technologies (computers
and communication, sensors and actuators) and, last but not least, (v)
applications. Furthermore (II) that informatics “hinges” on a number of
philosophical issues commonly known under the subtitles — epistemology,
ontology, mereology, etc.

e Objectives: To help you become a truly professional software develop-
ment engineer in the widest sense of that term, such as promulgated by
these volumes.

o Treatment: Nontechnical, discursive.

To develop large-scale software systems is hard. To construct them such that
they (i) solve real problems, (ii) are correct and pleasing and (iii) will serve
well in the acquiring organisation is very hard.

This series of volumes offers techniques that have proven (i) to make the
development of large-scale software systems much less hard than most current
software engineers find it, (ii) to result in higher-quality systems than normally
experienced and (iii) to enable delivery on time.

Thus we emphasise the software engineering attributes aimed at in this
series: Trustworthy and believable methods, higher-quality software products,

Preface — to Vols. 1-3 X

higher-quality software development projects, and the personal satisfaction of
developers and acquirers, that is, the software engineers and their manage-
ment, respectively the users and their management. We aim at much less, if
any, frustration, and much more fascination and joy!

Reasons for Writing These Volumes

A number of reasons

! can be given for why these volumes had to be written:
Formal techniques apply in all phases, stages and steps of software engi-
neering, and in the development of all kinds of software. But there was no
published textbook available that covered software engineering, such as we
shall later characterise that term, from a basis also in formal techniques
(besides other, “non-formal” bases).

Formal development (that is, specification, refinement and verification)

books were more like monographs than they were textbooks, and they cov-

ered their topic from a rather narrow viewpoint: usually just specification
of software, that is, of abstract software designs and their concretisation.

Formal specification, in these volumes, applies not just to software, but

also to their requirements prescription, and, as a new contribution (in any

book or set of lecture notes), also to domain descriptions.

The author of these volumes has long been less than happy with the way

in which current textbooks purport to cover the subject of software engi-

neering.

x “All” current textbooks on software engineering fail?> with respect to
very basic issues of programming methodology, in particular with re-
spect to (wrt) formal techniques. If they do, as some indeed do, bring
material on so-called “Formal Methods”, then that material is typi-
cally “tucked away” in a separate chapter (so named). In our mind,
the interplay between informal and formal techniques, that is, between
informal descriptions and formal specifications, informal reasoning and
formal verification, and so on, permeates all of software engineering.
The potential of (using) formal techniques shapes all phases, stages
and steps of development. Classical software engineering topics, such
as software processes, project management, requirements, prototyping,
validation (not to speak of verification), testing, quality assurance &
control, legacy systems, and version control & configuration manage-
ment, these auxiliary, but crucial, concerns of software engineering,
can be handled better, we show, through a judicious blend of informal
and formal techniques. Needless to say, these volumes will redress this
“complaint”.

1Usually, when more than one “excuse” is given for some “mistake”, none apply.
This series of volumes, however, is no mistake.

ZWith the notable exception of [240).

X Preface — to Vols. 1-3

%= All current textbooks, in our mind, fail in not properly taking into
account the issue of the software developer not having a thorough un-
derstanding of the domain in which the software is to be inserted, that
is, the domain from which sprang the desire to have “that new soft-
ware”! As mentioned above, a major new “feature” of our books is the
separation of concerns illustrated in the software development process
— when the developer initially spends much time and effort to under-
stand and document an understanding of the application domain.

% All current textbooks, in our mind, fail in not systematically, i.e.,
methodically, presenting principles, techniques and tools that “carry
through” and “scale up”. By carry through I mean principles, tech-
-niques and tools that are shown, by extensive examples, to cover all the
major phases, stages and steps of development. By scaling up I mean
principles, techniques and tools that can be applied to the largest-scale
software development projects.

% Some current textbooks, in our mind, fail the programming, that is, the
design issues completely. There is no assumption on any methodological
approach to the development of software from the point of view of
programming methodology.

% Other current textbooks, in our mind, fail the stepwise refinement, that
is, the implementation relation development point of view.?

* And yet other current textbooks fail the design point of view.

% Finally all current textbooks fail, we believe, in not properly inte-
grating the above, albeit more theoretical, points of view, with the
points of view of mundane, engineering issues such as (i) development
process models (“waterfall”, “spiral”, “iterative”, “evolutionary”, “ex-
treme programming”, etc.), (ii) quality management, (ii) testing & val-
idation, (iv) legacy systems, (v) software re-engineering, and so on.

5

Shortcomings of These Volumes

The major shortcoming of the current set of three volumes is our all too brief
coverage of correctness issues, that is, of the verification (theorem proving,
model checking) of properties of single and pairs of (development-step-related)
specifications.

3By the programming methodology point of view we mean a view that concerns
itself with such issues as establishing invariants when specifying loops, as securing
proper programming abstractions in terms of routines (procedures, functions), etc.

4By the stepwise refinement point of view we mean the concern that abstractions,
even when informally expressed, are rendered into correct concretisations — when
expressed as code. '

*By the design point of view we mean the programming concern for choosing
appropriate algorithms and data structures, for their justification and validation.

Preface — to Vols. 1-3 XI

Elsewhere, and where appropriate in these volumes, we explain why we
have not introduced substantial material on verification.

The reader, seeking this knowledge, is referred to an abundance of texts
(books, and articles in journals and in proceedings), or may have to wait till
we feel competent to write a textbook of sufficient generality on this topic.
Current texts are very much linked to a specific notational system (i.e., spec-
ification language).

+
o o °

Obviously we do not know all there is to know about how to develop all
possible kinds of software, and not all that we know is in these volumes. To
develop software, in general, takes a diverse range of techniques and tools.

Whatever special techniques and tools we cover, we cover them to some
non-trivial depth, but not to the depth that is sufficient for a professional
engineer in the relevant field. For example:

e Development of compilers: We cover quite a lot, but not all that is
necessary for the really professional compiler developer. We cover what
we believe all software engineers ought know. And we cover it in a way
that we find is sorely missing from all compiler textbooks. We refer to
Chaps. 16-20 of Vol. 2.

e Development of operating and distributed systems: We cover only
general principles and techniques of specifying concurrent systems.

e Development of embedded, safety-critical and real-time systems:
Basically the same coverage as for operating and distributed systems de-
velopment: We emphasise that Vol. 2 covers techniques for specifying
embedded, safety-critical and real-time systems. These techniques and
their underlying notations are those of Petri nets [313, 421, 435-437],
message [302-304] and live sequence charts [171, 270, 325], statecharts
[265, 266, 268, 269, 271], temporal logics [205, 360, 361, 400, 429] and the
duration calculi [537, 538].

Chapter 28 in Vol. 3, Domain-Specific Architectures, will, however, go into
some depth, showing which principles, techniques and tools apply in the de-
velopment of translation systems (interpreters and compilers), information
systems (database management systems), reactive systems (i.e., embedded,
real-time and safety-critical systems), workpiece systems (worksheet systems),
client /server systems, workflow systems, etcetera. Our treatment in that chap-
ter is novel, and is inspired, strongly, by Michael Jackson’s concept of Problem
Frames [310).

Thus we cover what we believe all software engineers, whatever their spe-
cialty is, should know. And we believe they should know far more than most
textbooks in software engineering offer.

As explained elsewhere, these volumes suggest that education and training
in the specialised ficlds mentioned above can follow after having studied Vol. 3.

XII" Preface — to Vols. 1-3

And much of the textbooks of those specialised fields really, then, ought be
rewritten: be adapted to formal specification, and so on.

Methods of Approach

Our didactics seeks to go to the “roots of the matter”. We see these roots
to be formed from basic understandings of such issues as (i) the linguistics
of “how to describe”, (ii) the near-philosophical issues of “what to describe”,
(iii) the linguistic, i.e., semiotic issues of pragmatics, semantics and syntax,
and (iv) the issues of constructing concise, objective formulations in terms
of mathematics, i.e., of using formal specification languages (and, in turn,
understanding their pragmatics, semantics and syntax — independent of the
pragmatics, semantics and syntax of the application phenomena).

Thus this book begins by exploring the above four issues. In Vol. 2 we
then take up this theme of semiotics (pragmatics, semantics and syntax) in
four separate chapters (Chaps. 6-9 incl.).

Also this is new: Existing textbooks on software engineering completely
avoid any mention of these issues. For a modern, professional software engineer
to graduate from any reputable academic institution without a proper grasp
on these four didactic bases (i-iv) is, to this author, unthinkable! Alas! It is
today the rule rather than the exception: That they do not even see these
issues at all!

A New Look at Software

These volumes will provide the reader with a new way of looking at software
and at the process of developing software. They will provide the reader with an
altogether dramatically different approach to understand and to develop soft-
ware. That “new look” can perhaps best be characterised as follows: Software
is seen as intellectual artifacts, as the product of a rather intellectual process
of thinking (analysing), of describing (of synthesising) and of contemplating
(of reasoning). Software, as a product, has less material, quantitative measures
by which to be grasped (no cheaper, faster, smaller, etc., catchwords) than
it has intellectual, qualitative measures — such as affinity to application do-
main (it is, or is not, the right product), fitness for human use (computer—user
interaction), correctness (the product is, or is not, right), etc.

Grasping abstraction — a major issue of these volumes — affords any
developer a far better chance of getting the right product and the product
right than not grasping abstraction — even when these same people do not
use many of the formal techniques of these volumes. Most practicing software
engineers do not grasp abstraction. Yet software, by its very nature is and must
be abstract: When supporting the automation of what used to be human work

Preface — to Vols. 1-3 XIII

processes, the automating software is not “those human processes”, it is only
a model, an approximation, an abstraction of them.

We wish to perpetrate a view of software development as something that
proceeds in phases, stages and steps of development and for which there are
now available clear techniques of relating these phases, these stages, these
steps to one another. Yet such development is hardly covered in standard
textbooks on software engineering. We wish to perpetrate a view of software
development where the specification of the phases, stages and steps can be
done formally, and where the relations can be formalised and, in cases where
warranted, can even be formally verified. This view has been possible, at least
in the small to medium, for at least 20 years. Yet such development is hardly
covered in standard textbooks on software engineering. We wish to further a
view of software development where the developers create, nurture and deploy
abstractions. Where the programmers at all levels take pride and have fun in
“isolating”, as it were, beautiful abstractions and let them find their way into
programs. In the end these programmers let those abstractions determine
major structures of systems, and beauty: Simplicity and elegance, as felt by
users, arises! Such development is scalable to large systems. It is now possible,
manageable and affordable. It can be taught and it can be learned by most
academically trainable students.

Formal Techniques “Light”

Many practicing programmers abstain from and some academics express reser-
vations about formal reasoning® or just formal specification.”

Our approach is a pragmatic one. We allow for a spectrum from systematic
via rigorous to formal development. By a systematic development we mean
one which specifies some of the steps of development formally. By a rigorous
development we mean one which expresses and formally proves some of the
proof obligations of a systematic development. By a formal development we
mean one which formally proves a significant majority of proof obligations as
well as other lemmas and theorems of a rigorous development.

In order to follow the principles and techniques of these volumes, we advise
going “light”: Start by being systematic. Specify crucial facets — of your
application domain, your requirements and your software designs — formally.
Then program (i.e., code) from there!

It seems, from practice [155], that by far the most significant improvements in
correctness of software development accrues from being systematic. And these

SExample: Proving, in some mathematical logic, some lemma about program
properties.

"Example: Describing, in addition to informally, but concisely, some domain, or
prescribing some requirements, or specifying some software design formally, in some
formal specification language.

XIV Preface — to Vols. 1-3

volumes are primarily, possibly almost exclusively, focused on being system-
atic. Certain kinds of applications warrant higher trust, and it then seems
that being rigorous achieves the next higher step of believability. Finally, a
few customers are willing to accept today’s rather high cost of formal develop-
ment: heart pacemakers, hearing-aid implants, hybrid controllers for nuclear
power plants, driverless metro trains, and the like.

Volume 3, Chap. 32, Sect. 32.2 discusses a rather large number of dogmas,
misconceptions and myths about so-called “formal methods”. Section 1.5.3 of
this volume and Vol. 3, Chap. 3, Sect. 3.1 discuss why methods cannot be
formal, but that some techniques can.

The “Super Programmer”

Many practicing programmers and some academics believe strongly in the
unchecked individualism of the programmer: They are worried that having to
adhere to a number of method principles and formal techniques may squash
the creativity and productivity of “super programmers”. We are not worried.
We have generated well over a 100 MSc thesis candidates. Most work in fewer
than eight software houses in Denmark. All follow, more-or-less, many of the
principles and techniques of these volumes. Most of them are super program-
mers.

The following has been expressed by other academics and most of my
former students and likewise those of my colleagues around the world who
similarly teach and propagate principles and techniques like those of these
volumes. I emphasise it here:

The principles and techniques of these volumes, even when adhered to only
“lightly”, even when hardly followed explicitly, are such that if you have
grasped them, while studying these volumes, they will have changed your
attitude to software engineering. It will never be the same.

We are sure that you will, from then on, enjoy far more doing “super program-
ming”, being a super programmer, and “being clever in many small ways, de-
vising smart tricks to do things better and faster.” We shall not deny a central
role® for being low level clever, for being smart. We will augment whatever
skills you may have in this direction with a number of teachable engineer-
ing principles and techniques. “The successful programmer is both beast and
angel.”

We claim that we can also point to several medium-scale software develop-
ment projects where knowing or being aware of the principles of these volumes
seems to have helped significantly in devising elegant, beautiful products. And
‘Beauty is our Business’ [224].

8The two slanted “quotes” of this paragraph are from an e-mail, Sunday, January
20, 2002, from Prof. Bertrand Meyer [5,375,376], ETH Ziirich, Switzerland, and ISE,
Santa Barbara, California, USA.

Preface — to Vols. 1-3 XV

What Is Software Engineering?

We continue the characterisation of software engineering that we began on
the very first page of this preface.

e Software engineering: To us, in a most general sense, ‘software engi-
neering’, as are all kinds of engineering, is a set of professions which based
on scientific insight construct technologies, or which analyses technologies
to ascertain their scientific content (including value), or, usually, do both.

o “Software Engineer”: Thus the software engineer (but see the follow-
ing for a critique of this term) “walks the bridge” between computer and
computing science, on one side, and software artifacts (software technolo-
gies), on the other side, and constructs — or studies — the latter based
on insight gained from the body of knowledge established in the many
disciplines of computer and computing sciences.

In a more mundane way, software engineering embodies general and specific
principles, techniques and tools (i) for analysing problems amenable to so-
lution or support through computing; (ii) for synthesising such (program,
such as software) solutions; (iii) for doing this analysis and synthesis in large
projects, that is, projects involving more than one developer, and/or projects
for which the resulting software is to be used by other (people) than the devel-
oper(s); and (iv) for managing such projects and products (including planning,
budgeting, monitoring and controlling the projects and the products).

But because we can term a subject software engineering does not necessar-
ily mean that we can speak of “software engineers”. As formulated above, and
this must be understood clearly by all readers of these volumes, software engi-
neering is a body of principles, techniques and tools available to such people as
we may otherwise have wished to label “software engineers”. But for any one
person to be labeled a software engineer without further, more “narrowing”
qualifications seems problematic. It would give the “recipient” of the message
that person is a software engineer the belief that the person in question is
able to professionally tackle the development of well nigh any software. With
Jackson [307] we claim that there are no software engineers! There are com-
piler engineers, there are embedded systems (software) engineers, there are
information (cum database) systems (software) engineers, there are banking
software engineers, and so on, just as we speak of automotive engineers and
of electrical power engineers rather than mechanical or electrical engineers.

Thus the principles, techniques and tools of these volumes apply, we claim,
across a broad spectrum of specialty software engineers. These volumes bring
examples of applications of the principles, techniques and tools across the
broadest possible spectrum. The fact that principles, techniques and tools
are generally useful and can be deployed across a broad field of occupations
and applications only means that the student must also, additionally, study
special texts on the chosen profession, compiler development, development of

XVI Preface — to Vols. 1-3

safety-critical real-time software, database systems, etc., to become a proper
specialty software engineer.

The Author’s Aspirations

So these then were and are my aspirations: To provide you with a differ-
ent kind of textbook; to bring more than 30 years of exciting programming
methodological studies and controlled experimental practice into the larger
arena of software engineering; to show you what a beautiful world software
development can be when following the didactic cornerstones of linguistics,
philosophy, semiotics and mathematics; and to unload more than 25 years of
evolving lecture notes into a set of three coherent, consistent and relatively
complete volumes.

I have written these volumes because I wanted to understand how to
develop large-scale software systems. When I started, some 25 years
ago, writing lecture notes on this subject, I knew less than I do now.
Meanwhile I have had the great pleasure of having many clever and
eager students follow the practice. I have initiated the large-scale com-
mercial developments of compilers for such unwieldy programming
languages as CHILL [254,255) and Ada [128,129,155], and I have thus
honed and corrected my thinking. Writing about software engineering
while testing out the ideas has been a sobering experience. There are
still many corners of software engineering that I have to write about,
think and experience. Meanwhile, this is what you get!

These volumes thus represent my chef d’ceuvre.

Role of These Volumes in an SE Education Programme

Who are the target readers of these volumes? That question is indirectly
answered in the following.

What roles do we see these volumes serve in the larger context of an
academic software engineering education, one that leads to a Master’s degree
in the subject? Figure 1 shall assist us in answering that question.?

9The labelled boxes of Fig. 1 designate topics that enter into the software en-
gineer’s daily practice, and which are therefore useful topics of learning. In Fig. 1
two-way arrows between boxes indicate that the designated topics can be studied
simultaneously. Directed (one-way) arrows between boxes designate a suitable, pro-
posed precedence relation between the learning of these topics. A “fan in” (multiple
source) arrow shows that a topic may need (i.e., have as prerequisites) the knowledge
of one or more (predecessor) topics. A “fan out” (possibly multiple target) arrow
shows that the arrow source topic is a “must” for one or more successor topics.

Preface — to Vols. 1-3 XVII

Recursive
Mathematical Mathematical
Logic (1) Function Logle (1) Algebra
imperative v SOFTWARE ENGINEERING Functional Logic Paraliet
. Volume 1 a— ! [=—= Prog Prog
(Java) Basic Abstraction Principles (Standard ML) (Prolog) (occam)
SOFTWARE ENGINEERING
Volume 2
SOFTWARE ENGINEERING
Volume 3
From via t
SOFTWARE ENGINEERING
A suitable Text on

Fig. 1. Courses based on these volumes: a first setting

We emphasise that we here place these volumes in the context of an academic
Software Engineering MSc education programme — not to be confused with an
academic Computer Science MSc education. The former aims at the produc-
tion of industry programmers: developers of commercial software. The latter
aims at theoreticians, useful in an academic institution of study. Another ex-
planation, wrt. another diagram, would thus have to be given for an equally
likely setting in the context of an academic programme for an MSc degree
in (theoretical) computer science, and yet another one for an undergraduate
course of an academic software engineering BSc education programme.

Prerequisite or “concurrent” courses: We assume that the reader of
these volumes is — or while following a course based on Vol. 1 of these
volumes becomes — familiar with the general topics of imperative, func-
tional, logic, parallel and machine programming. Teaching in these topics
must cover both skill-learning and training wrt. specific languages such as,
for example, SML (Standard ML) [261, 389] for functional programming,
Prolog [295,351] for logic programming, Modula-3 [262,401], Oberon [527]
and Java [10,20,243,348,470,511] for modular (i.e., object-oriented) pro-
gramming, and occam [364] and a machine language for some well-chosen,
“current-technology” hardware (e.g., Intel-like) chip. Their teaching must
also cover — to a basic extent — the knowledge acquisition wrt. the theo-
retical background for these programming styles and languages: recursive
function theory [136,444], logic for logic programming [295,351], Hoare
Logic for imperative programming [15,16] and process algebras for concur-
rency (CSP [288,289,448,456] and Petri nets [313,421,435-437]). The ma-
chine programming topic [379,501,511] is the only real hardware-oriented,
but not hardware-design-oriented [279,418], course. Codesign [482], that

XVIII Preface — to Vols. 1-3

is, design of combined hardware/software systems (tybica.l, for example,
for embedded systems, see below) is not covered. But one could “add
other boxes”! Included in the above kinds of course, or additional to these,
we expect the reader to have some working knowledge of algorithms and
data structures, i.e., to be familiar with the classical as well as modern
such algorithms and data structures and measures of concrete complex-
ity [7,357,371,495,524].

e Auxiliaries: The reader is assumed to be — or to become, in conjunc-
tion with the software engineering study of which these volumes are part
— comfortable with mathematics — to a Bachelor’s degree level in the
subjects listed. We suggest [534], a delightful “smallish” introduction, and
the substantial introduction to discrete mathematics [213]. We find [213]
to be an excellent textbook for an entirely separate, and major, course on
that topic. One that every software engineer is assumed to take.

"9";""’" Machine
Data Structures Programming
SOFTWARE ENGINEERING Graph Theory
Volume 1 and
Basic Abstraction Principles Combinatorics
Software SOFTWARE ENGINEERING Cakculus:
Tools Laboratory Volume 2 Differential
UnboLinux A 8 T Equetions
MS Windows
GUL, Graphics, Scripts l
Webvinternet
Lexical Scanners SOFTWARE ENGINEERING Statistics
Parsers Volume $ and
Exceters From via to 2 Theory
SOFTWARE ENGINEERING
* A sultsble Text on Operstions

Fig. 2. Courses based on these volumes: a second setting

Similarly, but more thought of as part of term projects and other forms
of laboratory (including self-study) work, we expect the reader to be rea-
sonably comfortable with practical, existing platform technologies (the
Software Tools Laboratory box).

e Main course: These volumes are then to serve in a main set of three
courses on software engineering — and before the breadth and depth of the
follow-on courses are attempted. We additionally would advise acquisition
of the two books [236, 238], the first as supplementary, the second to fill
out especially the verification (i.e., the design calculi) parts which are not
developed in these volumes.

