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Preface .

This text is a development of classroom notes prepared in connection with
advanced undergraduate and first year graduate courses in elasticity and
the mechanics of solids. It is designed to satisfy the requirements of
courses subsequent to an elementary treatment of the strength of matenals.
In addition to its applicability to aeronautical, civil, and mechanical
engineering and to engineering mechanics curricula, the authors have
endeavored to make the text useful to practicing engineers. Emphasis is
given to numerical techniques (which lend themselves 10 computerization)
in the solution of problems resisting analytical treatment. The stress placed
upon numerical solutions is not intended to deny the value of classical
analysis, which is given a rather full treatment. It instead attempts to fill
what the authors believe to be a void in the world of textbooks.

An effort has been made to present a balance between the theory
necessary to gain insight into the mechanics. but which can often offer no
more than crude approximations to real problems because of simplifica-
tions related to geometry and conditions of loading. and numerical solu-
tions, which are so"useful in presenting stress analysis in a more realistic
setting. The authors have thus attempted to emphasize those aspects of
theory and application which prepare a student for more advanced study
or for professional practice in design and analysis.

The theory of elasticity plays three important roles in the text: it
provides exact solutions where the configurations of loading and boundary
are relatively simple; it provides a check upon the limitations of the
strength of materials approach; it serves as the basis of approximate
solutions employing numerical analysis.

To make the text as clear as possible, attention is glven to the presenta-
tion of the fundamentals of the strength of materials. The physical signifi-
cance of the solutions and practical applications are given emphasis. The
authors have made a special effort to illustrate important principles and
applications with numerical examples. Consistent with announced national
policy, included in the text are problems in which the physical quantities
are expressed in the International System of Units (SI).

It is a particular pleasure, upon the completion of a project of this
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Preface

nature, to acknowledge the contributions of those who assisted the authors
in the evolution of the text. Thanks are, of course, due to the many
students who have made constructive suggestions throughout the several
years when drafts of this work were used as a text. To Professor F.
Freudenstein of Columbia University and Professor R. A. Scott of the
University of Michigan, we express our appreciation for their helpful
recomtnendations and valuable perspectives in connection with their re-
view of the manuscript. And, as has always been the case, Mrs. Helen
Stanek has provided intelligent editorial and typing assistance throughout
the several drafts of this work; to her, the authors express their special
thanks and appreciation.

A. C. UGURAL,
S. K. FENSTER

Teaneck, New Jersey
May, 1975



Contents
Chapter 1. Analysis of Stress
1.1 Introduction . 1
1.2 Definition of Stress 3
1.3 The Stress Tensor . . 5
1.4 Variation of Stress Within a Body ! 6
1.5 Two-Dimensional Stress at a Point 9
1.6 Principal Stresses in Two Dimensions 12
1.7 Mohr’s Circle for Two-Dimensional Stress .12
1.8 Three-Dimensional Stress at a Point . 17
1.9 Principal Stress in Three Diménsions 20
1.10 Stresses on an Oblique Plane o
in terms of Principal Stresses . . 24
1.11 Mohr’s Circle for Three- Dxmensnonal Stress . . 25
1.12 Variation of Stress at the Boundary of a Body . 27
~Problems._ . 28
Chapter 2. Strain and Stress-Strain Relations
2.1 Introduction . . 34
22 Strain Defined . . 35
2.3 Equations of Companblhty . . 38
24 Stateof StrainataPoint . . . . . - . 39
2.5 Engineering Materials . 43
2.6 Generalized Hooke’s Law . . 46
2.7 Measurement of Stre.n. Bonded Stram Gages . 49
2.8 Strain Energy . . 52
2.9 Components of Strain Energy . 55
2.10 Effect of Local Stress and Strain.
St. Venant’s Principle . . 57
Problems .. . 58

v



vi

Chapter 3. Two-Dimensional Problems in Elasticity

3.1
32
33
34
35
3.6
3.7
3.8

Introduction .

Plane Strain Problems

Plane Stress Problems

The Stress Function . .

Basic Relations in Polar Coordmates
Stress Concentration .

Contact Stresses .

Thermal Stresses . .

Problems . . . . . . .

Chapter 4. AMechanidal Behavior of Materials

4.1
42
43
44
4.5
4.6
47
48
4.9
4.10
4.11
4.12
4.13
414

Introduction .

Failure by Yielding and Fractuu
Yielding Theories of Failure .
The Maximum Principal Stress Theory
The Maximum Shear Stress Theory .

The Maximum Principal Strain Theory .

The Maximum Distortion Energy Theory .

The Octahedral Shearing Stress Theory
Mohr’s Theory . . . e e e
The Coulomb-Mohr Theory . .
Comparison of the Yncldmg Theories
Theories of Fracture . . .o
Impact or Dynamic Loads .

Dynamic and Thermal Effects .

Problems

Chapter 5. Bending of Beams

5.1

5.2

5.3

54

Introduction . . . .

Part 1. Exact Solulwn.t . .

Pure Bending of Beams of Symmetrlcal
Cross-Section

Pure Bending of Beams of Asymmetncal

Cross-Section . .

Bending of a Cantilever o( Narrow Sectlon

Contents

63

67
69
74
79

89

. 97
. 98
. 101
. 102
. 103
. 104
. 105
. 107
. 110
111
.13
. 114
. 115
. 119
. 120

. 124
. 124

. 128
. 133



Contents

Chapter 6.

Chapter 7.

5.5

5.6
5.7
58
5.9
5.10

5.1
5.12

Bending of a Simply Supported, Narrow Beam .

Part 2. Approximate Solutions

Elementary Theory of Bending

The Normal and Shear Stresses .

The Shear Center . e
Statically Indeterminate Systems e '

Strain Energy in Beams. Castigliano’s Theorem .

Part 3. Curved Beams
Exact Solution .
Winkler’s Theory

Problems .

Torsion of Prismatic Bars

6.1
6.2
6.3
6.4

6.5

6.6
6.7

Introduction

General Solution of the Torsxon Problem
Prandtl’s Membrane Analogy . . .
Torsion of Thin Walled Members of Open
Cross-Section c e
Torsion of Multiply Connected

Thin Walled Sections

Fluid Flow Analogy and Stress Concentratlon .

Torsion of Restrained Thin Walled Members
of Open Cross-Section e .

Problems

Numerical Methods

71
7.2
73
1.4
1.5
1.6
7.7
7.8
7.9

Introduction . . :

An Informal Approach to Numencal Analysw
Finite Differences . . e e e
Finite Difference Equatlons

The Relaxation Method .

Curved Boundaries . . . .
Boundary Conditions-. .

The Moment Distribution Method

The Finite Element Method—Preliminaries

7.10 Formulation of the Finite Element Method
7.11 The Triangular Finite Element '

. 136
. 138
. 138
. 141
. 144
. 149
. 150
. 153
. 153
. 156
. 163

. 169
. 170
177

. 181

. 183
. 187

. 189
. 194

. 197
. 197
. 201
. 205
. 208
. 209,
.. 212
. .215
... 219
. 223
. 225



7.12 Use of Digital Computers
Problems . C e e

Chapter 8. Axisymmetrically Loaded Members

Chapter 9.

Chapter 10.

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

Introduction . .
Thick Walled Cylmders .
Maximum Tangential Stress
Application of Failure Theories
Compound Cylinders .

Rotating Disks of Constant Thlckness .

Rotating Disks of Variable Thickness
Rotating Disks of Uniform Stress

A Numerical Approach to Rotating
Disk Analysis

8.10 Therma! Stress in Thin Dlsks .
8.11 The Finite Efement Solution
Problems .

Beams on Elastic Foundations

9:1
9.2
9.3
9.4
9.5

9.6

9.7
9.8

General Theory
Infinite Beams .
Semi-infinite Beams .

Finite Beams. Classification of Beams .

‘Beams Supported by Equally
Spaced Elastic Elements
Simplified Solutions

for Relatively Stiff Beams .
Solution by Finite Differences
Applications

Problems

Energy Methods

19.1 Introduction .
10.2 Work Done in Deformauon
10.3 The Reciprocity Theorem

Contents

. 241

. 246
.247
.253
.254
.255
.257
. 261
. 264

. 266
.272
.274
. 280 .

.283
. 285
. 289
.291

.293

. 294
. 296
.298
. 300

. 303
. 303
. 305



Contents

104
10.5
10.6
10.7
10.8
10.9

Castigliano’s Theorem

. The Unit or Dummy Load Method .

The Crotti-Engesser Theorem .
Statically Indeterminate Systems .
The Principle of Virtual Work .
Application of Trigonometric Series .

10.10 The Rayleigh-Ritz Method .
Problems e e e

Chapter 11. Elastic Stability

111
11.2
113
114
11.5
11.6
11.7
11.8
11.9

Introduction

Critical Load ..

Buckling of a Column

End Conditions .

Critical Stress in a Column
Allowable Stress . . .
Initially Curved Members e
Eccentrically Loaded Columns .

Energy Methods Applied to Buckling .

11.10 Solution by Finite Differences
Problems . e e e ..

7/

Chapter 12. Plastic Behavior of Solids

12.1
12.2
12.3
124

12.5.

12.6
12.7

Introduction .

Plastic Deformation

Stress-Strain Curves .

Theory of Plastic Bending . . .
Analysis of Perfectly Plastic Beams
The Collapse Load of Structures .
Elastic-Plastic Torsion . -

Problems

Chapter 13. Introduction to Plates and Shells

13.1

Part 1. Bending of Thin Plates
Basic Definitions . .

306
309
311
312
315
318
321
323

. 328
. 328
.330
. 333
.334
. 336
. 338
. 340
. 342
. 349
. 356

. 363
. 363
. 365
. 365
. 368
.374
.379
. 381

. .384



Index .

13.2
133
13.4
13.5
13.6
13.7

13.8
13.9

Stréss, Curvature, and Moment Relations

The Differential Eqaation of Plate Deflection .

Boundary Conditions .
Simply Supported Rectangular Plates .
Axisymmetrically Loaded Circular Plates
The Finite Element Solution .

Part 2. Thin Shells

Definitions . .

Simple Membrane Actlon .

13.10 Symmetrically Loaded Shells of Revoluuon
13.11 Cylindrical Shelis . ...
Problems . e

Appendix A Indicial Notation .
Answers to Selected Problems

. 386
.388
391
.393
397
. 400

. 405
. 407
.410
. 413

. 417
. 419
. 429



Chapter 1

‘ Analysis of Stress

1.1 Introduction

The basic structure of matter is characterized by nonuniformity and
discontinuity attributable to its various subdivisions: molecules, atoms,
and subatomic particles. Our concern in this text is not with the particulate
level of matter, however, and it is to our advantage to replace the actual
system of particles with a continuous distribution of matter. There is the
clear implication in such an approach that any small volumes with which
we may deal are large enough to contain a great many particles. Random
fluctuations in the properties of the material are thus of no consequence.
Of the states of matter, we are here concerned only with the solid, with its
ability to maintain its shape without the need of a container, and to resist
continuous shear and tension.

In contrast with rigid body statics and dynamics, which treat .the
external behavior of bodies (i.c., the equilibrium and motion of bodies
without regard to small deformations associated with the application of
load), the mechanics of solids is concerned with the relationships of
external effects (forces and moments) to internal stresses and strains.

External forces acting on a body may be classified as surface forces and
body forces. A surface force is of the concentrated type when it acts at a
point; a surface force may also be distributed uniformly or non-uniformly
over a finite area. Body forces act on volumetric elements rather than
surfaces, and are attributable to fields such as gravity and magnetism.

The principal topics under the general headmg mechamcs of solids may
be summarized as follows:

(a) Analysis of the stresses and deformations within a body subject to a
prescribed system of forces. This is accomplished by solving the governing
equations which describe the stress and strain fields (theoretical stress
analysis). It is often advantageous, where the shape of the structure or
conditions of loading preclude a theoretical solution or where verification

1



Analysis of Stress

is required, to apply the laboratory techniques of experimental stress
analysis.

(b) Determination by theoretical analysis or by experiment of the
limiting values of load which a structural element can sustain without
suffering damage, failure, or compromise of function.

(c) Determination of the body shape and selection of -those materials
which are most efficient for resisting a prescribed system of forces under
-specified conditions of operation such as temperature, humidity, vibration,
and ambient pressure. This is the design function and more particularly
that of optimum design. Efficiency may be gaged by such criteria as
minimum weight or volume, minimum cost, or any criterion deemed
appropriate. '

The design function, item (c) above, clearly relies upon the performance
of the theoretical analyses cited under (a) and (b), and it is these to which
this text is directed. The role of analysis in design is observed in examinirg
the following steps comprising the systematic design of a load carrying
member:

(1) Eva]uation of the most likely modes of failure under anticipated
conditions of service. ;

(2) Determination of expressions relating external influences such -as
. force and torque to.such effects as stress, strain, and deformation. Often,
the member under consideration and the conditions of loading are so
significant or so amenable to solution as to have been the subject of prior
analysis. For these situations textbookss handbooks, journal articles, and
technical papers are good sources of information. Where the situation is
unique, a mathematical derivation specific to the case at hand is required.

(3) Determination of the maximum or allowable value of a significant
quantity such as stress, strain, or energy, either by reference to compila-
tions of material properties or by experimental means such as a simple
tension test. This value is used in connection with the relationship derived
in (2). ' .
(4) Selection of a design factor of safety, usually referred to simply as the
factor of safety, to account for uncertainties in a number of aspects of the
design, including those related to the actual service loads, material proper-
ties, or environmental factors. An important area of uncertainty is con-
nected with the assumptions made in the analysis of stress and deforma-
tion. Also, one is not likely to have a secure knowledge of the stresses
which may be introduced during machining, assembly, and shipment of
the element. The design factor of safety also reflects the consequences of
failure, e.g. the possibility that failure will result in loss of human life or
injury, and the possibility that failure wil# result in costly repairs or danger
to other components of the overall system. For the abovementioned
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reasons the design: factor of safety is also sometimes ealled the factor of
ignorance. The uncertainties encountered during the design phase may be
of such magnitude as to lead to a design carrying extreme weight, volume,
or cost penalties. It may then be advantageous to perform thorough tests
or more exacting analysis rather than to rely upon overly large design
factors of safety. The so-called true factor of safety can only be determined
after the member is constructed and tested. This factor is the ratio of the
maximum load the member can sustain under severe testing without
damage to the maximum load actually carried under normal service
conditions. ‘

The foregoing procedure is not always conducted in as formal a fashion
as may be implied. In some design procedures, one or more steps may be
regarded as unnecessary or obvious on the basis of previous experience.

We conclude this section with an appeal for the reader to exercise a
degree of skepticism with regard to the application of formulas for which
there is uncertainty as to the limitations of use or the areas of applicability.
The relatively simple form of many formulas usually results from rather
severe restrictions in their derivation. These relate to simplified boundary
conditions and shapes, limitations upon stress and strain, and the neglect
of certain complicating factors. The designer and stress analyst must be
aware of such restrictions lest their work be of no value, or worse, lead to

- dangerous inadequacies. )

In this chapter, we are concerned with the state of stress at a point and
the variation of stress throughout an elastic body. The latter is dealt with in
Secs. 1.4 and 1.12, and the former in the balance of the chapter. ‘

1.2 Definition of Stress

Consider a body in equilibrium, subject to the system of forces shown in
Fig. 1.1a. An element of area A4, located on an exterior or interior surface
(the latter as-in Fig. 1.1b), is acted on by force AF. Let n, s,, s, constitute a
set of orthogonal axes, origin placed at the point P, with n normal and
Sy, 5; tangent to AA4. In general AF does not lie along n, s,, or s,.
Decomposition of AF into components parallel to n, s, and s, (Fig. 1.1¢)
Jleads to the following definitions of the normal stress o, and the shear
stresses 7,:

. i AF,
i AA“-EO AA
' 1.1
T AB, Ag 0 T lim
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Fig. 1.1

These expressions provide the stress components at a point P to which the
area AA is reduced in the limit. Clearly, the expression A4 —0 depends
upon the idealization discussed in Sec. 1.1. In this country, stress is
generally measured in pounds per square inch or kilopounds per square
inch. In the International System of Units (SI), a system likely to gain
widespread acceptance, stress is meastired in newtons per square meter.
Table 1.1 shows the equivalence between the two systems of units.

Table 1.1
System of units
US. S1
Length inch meter (m)
Force pound force newton (N)
Time second second (s)
Mass pound mass, slug kilogram (kg)

Some conversion factors
lin.= 0.0254 m 11bm = 0.4536 kg
11bf = 4448 N 1 psi=6,895 N/m?
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The values obtained in the limiting processes of Eq. (1.1) differ from
point to point on the surface as AF varies. The stress components depend
not only upon AF, however, but also upon the orientation of the plane on
-which it acts at point P. Even at a given point, therefore, the stresses will
differ as different planes are considered. The complete description of stress
at a point thus requires the specification of the stress on all planes passing
through the point. :

T,

1.3 The Stress Tensor

It is verified in Sec. 1.8 that in order to enable the determination of the
stresses on an infinite number of planes passing through a point P, thus
defining the stress at that point, one need only specify the stress com-
ponents on three mutually perpendicular planes passing through the point.
These three planes, perpendicular to the coordinate axes, contain three
sides of an infinitesimal parallelepiped (Fig. 1.2). A three-dimensional state
of stress is shown in the figure. Consider the stresses to be identical at
points P and P’, and uniformly distributed on each face, represented by a
single vector acting at the center of edch face. In accordance with the
foregoing, a total of nine scalar stress components define the state of stress
- at a point. The stress components can be assembled in the following matrix
form, wherein each row represents the group of stresses acting on a plane
passing through P(x, y, z):

Txx Ty Txz Oy Ty Txz
. ==
e Ty T T O T, (1.2)
-7, 7
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The above array represents a tensor of second rank (refer to Sec. 1.8),
requiring two indices to identify its elements or components. A vector is a
tensor of first rank; a scalar is of zero rank.

The double subscript notation is interpreted as follows the fxrst sub-
script indicates the direction of a normal to the plane or'face on which the
stress component acts; the second subscript relates to the direction of the
stress itself. Repetitive subscripts will be avoided in this text, so that the
normal stresses ,,, 7,,, and 7,, will be designated o,, o,, and o,, as

indicated in Eq. (1.2)."4 face or plane is usually identified by the axis normal
to it, e.g., the x faces are perpendicular to the x axis.

Referring again to Fig. 1.2, we observe that both stresses labeled 7,, tend
to twist the element in a clockwise direction. It would be convement
therefore, if a sign convention were adopted under which these stresses
carried the same sign. Applying a convention relying solely upon the
coordinate direction of the stresses would clearly not produce the desired
result, inasmuch as the 7, stress acting on the upper surface is directed in
the positive x direction, while 7,, acting on the lower surface is directed in
the negative x direction. The following sign convention, which applies to
both normal and shear stresses, is related to the deformational influence of
a stress, and is based upon the relationship between the direction of an
outward normal drawn to a particular surface, and the directions of the
stress components on the same surface. When both the outer normal and
the stress component face in a positive direction relative to the coordinate
axes, the stress is positive. When both the outer normal and the stress
component face in a negative direction relative to the coordinate axes, the
stress is positive. When the normal points in a positive direction while the
stress points in a negative direction (or vice versa), the stress is negative. In
accordance with this sign convention, tensile stresses are always positive
and compressive stresses always negative. Figure 1.2 depicts a system of
positive normal and shear stresses. ‘

Many of the equations of elasticity become quite unwieldy when written
in full, unabbreviated from; see, for example, Eq. (1.17). As the complexity
of the situation described increases, so does that of the formulations,
tending to obscure the fundamentals in a mass of symbols. For this reason
the more compact indicial or tensor notation described in Appendix A is
sometimes found in technical publications. A stress tensor is written in
indicial notation as 7, where / and j each assume the values x, y, and z as

- required by Eq. (1.2). Generally, such notation is not employed in this text.

1.4 Variation of Stress Within a Body

As pointed out in Sec. 1.2, the components of stress generally vary from
point to point in a :tressed body. These variations are governed by the



