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PREFACE

This book is based on a preprint edition, An Introduction to Matriz-
Tensor Methods in Theoretical and Applied Mechanics, which was issued
on a more or less interim basis and has been used by the author in at least
six of his graduate courses. The present book represents a complete
rewriting and bringing up to date of the earlier work, in the light of
classroom experience. The purposes of the text are:

1. To introduce the engineer to the very important (and increasingly
important) diseipline in applied mathematics—tensor methods. Be-
cause the author’s classroom experience hes convinced him that the
engineer can follow tensor theory most easily when it is presented in
matrix form, this has been the method used in the text.

2. To show the fundamental unity of the different fields in continuum
mechanics~—with the unifying material formed by the matrix-tensor
theory. Too often the student loses sight of the real connections be-
tween fields that we have artificially decompartmentalized. A truer
understanding of the important and basic segment of engineering—
mechanics of continua—can be obtained, the author feels, when the
various portions of this field are presented as part of the complete
fabric.

3. To-present to the engineer modern engineering problems. For this
reason, mathematical arguments have been kept to a minimum or
avoided entirely where they would tend to add little to the physical
understanding of the phenomenon being discussed. However, it
should also be emphasized that the book is not to be thought of as
nonmathematical. It requires of the student an understanding of
differential and integral calculus, vector analysis, complex variable
theory, mathematical analysis, and related topics usually considered
to be the equipment of the graduate engineer or scientist. The
fundamentals of matrix and tensor theory are covered in a form suf-

ficient for the purposes of the text—and for additional advanced use
as well,

In the first chapter the fundamentals of matrix algebra and calculus are
presented, as well as a brief review of vector analysis and the introduc-
vii



viii PREFACE

tory complex variable theory. This coverage, together with the current
unlergraduate mathematical training of engineers, should be sufficient
preparation.

Chapter 2 presents the elements of tensor theory. The fundamental
nature of the tensor is emphasized: the requirement that it behave in a
certain manner under a transformation (rotation) of axes about the origin,
The connection between the tensor and the matrix is brought out, and the
groundwork in matrix-tensor analysis is laid.

Curvilinear coordinates, one of the most useful and important topics in
applied mathematics to the engineer, is discussed in Chapter 3. The entire
development, presented in matrix-tensor form, leads to expressions which
permit one to put all of the equations of mathematical physics in any
orthogonal curvilinear form whatever.

The remaining chapters indicate the applications of the theory to con-
tinuum mechanics—to fluids and to solids. Chapters 4 and 5 give the
theory and some applications in the mathematical theory of elasticity.
The essential tensors are derived, and their position in the theory is
described in detail. Chapter 6 presents a discussion of matrix-t¢nsor
methods as they oceur in structural engineering, Chapter 7 presents the
application of matrix-tensor methods to plate and shell theory; Chapter 8
considers viscous flow phenomena, Chapter 9, plasticity. In all cases, the
arguments and theory are presented from the matrix-tensor point of view,
and the similarities (as well as essential differences) between the various
fields are eonstantly brought out. :

Chapter 10 presents a subject that is based squarely upon the matrix-
tensor theory and that crosses all the fields considered in the text (and
others). A form of dimensional analysis is described that is based upon
tensoral invariance arguments, enabling one to give, without derivation,
the qualitative form of many of the equations of mathematical physics
and hence engineering.

A list of references to the standard works in the various fields considered,
and to other special reports and books mentioned, is supplied. At the end
of each chapter is a problems section.

In the author’s graduate courses, he found it possible to complete essen-
tially the entire book in a single three-hour-a-week semester. A graduate
course in engineering mathematics was a prerequisite for this course. In
his senior elective course the author was able to complete Chapters 1
through 4 in a three-hour-a-week semester. As a senior course, it should
be possible to present the entire text in two semesters,

The author is indebted to Professor Francis Murnaghan whose inspiring
lectures at Johns Hopkins University first introduced him to applied
matrix-tensor methods. Professor Murnaghan’s textbooks have been re-
ferred to libersily for basic source material. Several of the treatments
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presented are those given by Dr. Murnaghan in his lectures. However,
in the interests of engineering simplification, the author has taken some
liberties in the form of presentation. If there are errors in this material
as given here, the fault lies with the author.

8. ¥. Bore
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Chapter 1

MATHEMATICAL PRELIMINARIES

1-1 Introduction. In this chapter a brief treatment of matrix
algebra is presented. In addition a discussion is given, in abbreviated
form, of vector analysis and complex variable theory. The presenta-
tion of the topics in this chapter is utilitarian in form and, insofar as
the vector analysis and complex variable portions are concerned, it is
more in the nature of a review and refresher of the introductory phases
of these subjects. A knowledge of the material presented in this and
the next chapter will give an adequate mathematical background for
the later portions of the text.

1-2 Definition of a Matrix. A rectangular array of m rows and n
columns of numbers or other quantities is called a matriz. We designate
this matrix with a capital letter, as 4, and show it in its expanded

form as
ay a1z @
A4 = ( 11 d12 1:) (1-1)
a1 a2 dg
In the above expression, @i represents an element of the matrix.
Note particularly that the subscripts of the elements carry a position
significance. That is, the first subsecript represents the row position of
the element and the second subscript represents the column position.
A matrix is not a determinant.! As a reminder of this, the enclosing
1 Mare precisely:
1. A determinant is & quantity associated with a sguare array of n? elements. Thus,
l a11 Gi2 l

Ga31  Og
is also given by the quantity a)iass—a13031.
2. A matrix need not be square. It is simply a set of m x n elements in an ordered

array. Thus
o )
az1

does not imply any particular operation need be performed on the elements a:;.
Footnote continued on page 3.
1



2 MATRIX-TENSOR METHODS IN CONTINUUM MECHANICS

bars are shown curved as against the ordinary usage of straight bars
for the determinant.

The number of rows in a matrix need not necessarily be the same as
the number of columns. If the number of rows does equal the number
of columns then the matrix is a square matriz.

A matrix which counsisis of elements in a single row is sometimes
called a row matric. 1f the elements are in a single column it is some-
times called a column matriz. No particular distinction, in general,
need be made between the one and the other.

The elements of a matrix may cr may not have any physical signifi-
cance. For example, the elements may be pure numbers, as

6 —-32 74 (1-2)
or the elements may be components of a velocity vector, as

%
V=1J|v (1-3)
w

Indeed, they could even be colors, as
(red blue green)
cr animails, a3
cat

dog (1-4)
hare

or they could be mixtures of any or all of the above.

No significance must be attached to the use of a row for the numbers
and colors and a column form for the velocity and animals in the above
matrices.

The elements of a matrix may also be complex quantities, chemical
symbols, equations, or, in fact, any quantity whatever.

The zero, or null, matriz, 0, has all elements equal to zero. Thus, we
have

0=(000) (1-5)

0 0) 1-8)
(o o (
Foothote continued from poge 1.

3, Wa may, however, define the determinant of a square matrix. Thisis, by definition,
the gquantity obtained by treating the elements of the matrix as elements of a determi-
nent—the position of the elements being the samein both the matrix and the determinant.

We shall also in the following sections indicate various operations (arithmetic, alge-
braic, and other) that may, by definition, be performed on and by matrices.

or

I




MATHEMATICAL PRELIMINARIES 3

or any similar arrangement. Note: the zero matrix may be either a
row or column or square matrix, or & general matrix of rectangular
form,

The unit matrix E, is an n-by-n-square matrix whose diagonal
elements (top left to bottom right) equal unity and whose off-diagonal
elements equal zero. That is,

. agy =1 if i =7
in E | A (1-7)
ag; =0 if ©#]
and, as an example,
1 0 O
Es={0 1 0 (1-8)
0 01
A square matrix is symmetrical if
ayy = ag (1-9)
An example of a symmetrical matrix is the following:
x e 2?
e yz 3t
22 3t 1 (1-10)
A square matrix is antisymmelric or skew-symmetric if
A3 = —ay (1-11)
An example of a skew-symmetric matrix is
( 0 —-3t) 112
3t 0 (1-12)
Note that in a skew-symmetric matrix the main diagonal (upper left
to lower right) elements must be zero, for only then will a;; = —ay be

true for these elements.
The transpose of a matrix 4 is shown as A* and is obtained by inter-
changing the rows and columns of 4. Thus, if

z xet 2-y
A= 1-
(4 S3zy 0 ) (1-13)
then
z 4
A* = | zet 3ay (1-14)

2—-y O
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The foregoing represents the basic definitions or nomenclature in
matrix theory.

1-3 Matrix Arithmetic, Aigebra, and Calculus. Up to this
point we have defined, in some detail, exactly what a matrix is and we
have discussed some special matrices. If matrices are to be useful in
engineering or physical applications, then they must behave in certain
gset ways when subjected to particular conditions. In our work in
engineering and science we are primarily concerned with quantitative
relations, and therefore we shall be most interested in the behavior of
matrices in arithmetical and related mathematical operations. Matrices
will be of use to us if, and only if, the theory of matrices can be deve-
loped along logical mathematical lines.

The simplest mathematical operations are those of arithmetic—
equality, addition, subtraction, multiplication, and division. Wediscuss
these first.

Two matrices 4 and B are equal only if each has the same number
of rows and the same number of columns and if corresponding elements
are equal. Thus, given

a a a
4= ( 11 @12 xs) (1-15)
a1 Q32 d23

b
B = ( un bz bls) (1-16)
bz1 bea g3
then if
aiy = by (1-17)
it follows
A=B (1-18)
Thus, the simple algebraic equations
6 =7p+2
b =q+Tv
? (1-19)
¢ =r+1.6w
d =8+ 172

may be given in matrix form as
a b +2u +Tv
(o= (e e a0
c d r+1.6w s+17x

We define the sum of two matrices 4 and B only if 4 and B have
the same number of rows and of columns. The sum 4+ B is then a
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matrix C of the same number of rows as 4 (and B) and the same
number of columns as 4 (and B) and with

Cij = ayg+diy (1-21)
For example, the algebraic equations

e = an+bn

ciz = a1+ b2

o1 = G21+bay

Co2 = age+bgg

(1-22)

are equivalent? to
e a by b
G Rt e
Ca1 ag1 bat
It may be shown (the student should verify this and the following
statement for typical matrices) that the sum of two matrices is commu-
tative. That is,
A+B =B+ A4 (1-24)

Also, it may be shown that the addition of matrices is associative,
That is,

(A+B)+C = A+(B+0C) (1-25)
The difference of two matrices 4 and B is defined similarly. Thus,
C=A-B (1-26)
with
cij = ayy—byy (1-27)

We may define multiplication of a matrix 4 by a scalar k as follows:
the elements of k4 are given by kay, so that, for example, if

au iz
A= ( ) (1-28)
az Qg
then
kann ka
. k4 = ( u ‘2) (1-29)
kagy kasgs
% Alternatively, this may be expressed in the following essentially equivalent form:
1 an 11
s a1 baa
on ast + bay
coa are Oae

in which the positional significance of the subscripts has been waived.
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Note that this is consistent with the usual notation

kA = A+A+ --- +4 (1-30)
\..__V____.,’
ktimes

&n important property of square matrices which follows directly
from the law of addition and subtraction is the following

Any square matrix may be given as the sum of a symmetrical and
antisymmetrical matrix. For, if 4 is a square matrix, then obviously

A+A4* A4-—-4* (1-31)
A==+

The first term on the right is a symmetrical matrix and the second
term is an anfisyrametrical matrix. This may be verified for a 2 x 2
matrix as roliows:

If
4 = (an 012) (1-32)
da1 a22
then
A* - (all azl) (1_33)
a12 Q22
so that
a ajz+azy
A+ 4 _ - 2 (1-34)
2 az +aie o
2 22
and
Q12— agl
A—A4* 2
2 | an-a (1-38)
21 — a12 0
2

A very important operation in matrix arithmetic is the product of
two matrices. The previous operations are not too different from the
more familiar ones of elementary arithmetic. The product operation,
however, is quite different.
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The product of two matrices is obtained as follows: given two matrices
A and B such that the number of rows in B equals the number of
columns in A4, then the product 4B is given by C, in which the element
cq is obtained by multiplying each element of the ith row of 4 by the
corresponding element of the jt8 column of B and adding. For example,

C = AB
bn
C11 a1y ajz ais
() = (e o o) {Bm
c21 21 Qg2 ag
ba1
(1-36)
(Cu) B (anbu + az2bay +a13b31)
or® cz1 ag1b11 + azebay + agsbs
o1 = anbu +aiebe; + ayzbsy

C21 = ag1bi1 + Gaabe1 + azsbs
Note, in the above product, C is a 2 x 1 matrix. In general, if
C = AB (1-37)

and if % is the number of rows in 4 and ! is the number of columns in
B, then the matrix C will have & rows and I columns.
It will be obvious from the above example that, in general,

AB # BA (1-38)
that is, the position of a matrix in a matrix multiplication is not

immaterial.
The student should also note that

CE = C (1-39)

where C is any matrix, & is a unit matrix of same number of rows as
. C has columns. For example,

1 0 0
€11 €12 € 11 €z C
( 11 €12 13) 01 ol ( 11 C12 13) (1-40)
C21 C22 C23 0 0 1 C21 C32 Cz28

Thus, E plays the same role in matrix multiplication that unity plays
in algebraic multiplication.

8 Equation 1-36 indicates the usefulness of the given definition of matrix produoct.
The first line of Equation 1-36 is a compact expression for the two linear equations shown
in the last two lines of Equation 1-36. In general, systems of linear equations can be
shown very compactly by utilizing the definition of matrix product.
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As another example of matrix multiplication, the student should
satisfy himself that the set of algebraic equations

a = 2ex + 3gy
b =
2ev +3gw (1-41)
¢ = —tr+s%y
d = —tv+é&w

is equivalent to the matrix equation

a b 2e¢ 3g\(x v
e d=(5 G ) -4
c d -t 82/\y w

It may be shown (the student should verify this and the following

statement using simple matrices) that the product of matrices is
assoctative. That is,

(4B)C = A(BQO) (1-43)
Also, the product of matrices is distributive. That is,
AB+C)= AB+AC (1-44)

The following expression is the statement of the very important
transpose product rule:

(ACO)Y* = C*4* (1-45)

The student should verify this for a simple case.

Division of matrices is a non-unique process and therefore must
remain undefined and not part of the algebra of matrices.4 To illustrate
what is meant by this, consider the product

AB =C (1-48)
where
a1 a2 a3
4= |an axm azg {1-47)
asy asz dsg

2
B=1{6 (1-48)
1

4 Although division, as noted herein, is an undefined operation, division corresponding
to the relation A4~ m E, or A~! = E,/A in which 4~ is the “inverse of A”, is defined
as shown on p. 10. When it exists, 4-1 is analogous to the reciprocel of & number A in
arithmetic.



