BENT A SETHARES

BUSINESS BASIC

Business BASIC
Third Edition

Robert J. Bent
George C. Sethares

Bridgewater State College

.i Brooks/Cole Publishing Company
| Pacific Grove, California

Brooks/Cole Publishing Company
A Division of Wadsworth, Inc.

© 1988, 1984, 1980 by Wadsworth, Inc., Belmont,
California 94002. All rights reserved. No part of this
book may be reproduced, stored in a retrieval system, or
transcribed, in any form or by any means—electronic,
mechanical, photocopying, recording, or atherwise —
without the prior written permission of the publisher,
Brooks/Cole Publishing Company, Pacific Grove,
California 93950, a division of Wadsworth, Inc.

Printed in the United States of America
10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

Bent, Robert J., [date]
Business BASIC.

Includes index.

1. BASIC (Computer program language) 2. Business—
Data processing. 1. Sethares, George C., [date]
11. Title.
QA76.73.B3B47 1988 005.13'3
ISBN 0-534-09024-9

87-35802

Sponsoring Editor: Cynthia C. Stormer

Marketing Representative: John Moroney

Editorial Assistant: Mary Ann Zuzow

Production Editor: Sue Ewing

Production Assistant: Linda Loba

Manuscript Editor: Harriet Serenkin

Permissions Editor: Carline Haga

Interior and Cover Design: Lisa Thompson

Cover Photo: Lee Hocker

Art Coordinator: Lisa Torri

Interior [llustration: Maggie Stevens

Photo Editor: Lisa Thompson

Photo Researcher: Monica Suder

Typesetting: Progressive Typographers, Emigsville, PA
Cover Printing: Lehigh Autoscreen, Pennsauken, NJ
Printing and Binding: Diversified Printing and Publishing
Services, Inc., Brea, CA

Photo Credits
We wish to acknowledge the following people and
companies for the photos used in this book.

Chapter 1. 1, Figure 1.1, Frank Keillor. 2, Figure 1.3,
Sperry Corporation. 3, Figure 1.4, Texas Instruments.
Figure 1.5, NCR. 4, Upper left, Honeywell, Inc. Upper
right, General Electric. Lower, IBM Corporation. 5,
Upper, Judy Blamer, Lower, IBM Corporation. 6, Figure
1.6, Apple Computer, Inc. 7, Upper left, Frank Keillor.
Upper right, Digital Corporation. Lower left, Datapro-
ducts Corp. Lower right, Frank Keillor. 8, Left, Judy
Blamer. Right, IBM Corporation.

Chapter 2. 14, Both photos, NASA/Ames.

Chapter 3. 26, Upper, Apple Computer, Inc. Lower,
Honeywell, Inc.

Chapter 4. 40, Upper, Texas Instruments. Lower, AT&T.
Chapter 5. 52, Upper, IBM Corporation. Lower, Apple
Computer, Inc.

Chapter 6. 60, Upper right, General Electric Company.
Upper left, IBM Corporation. Lower, Hewlett-Packard
Company.

Chapter 7. 74, Upper, Hewlett-Packard. Middle, IBM.
Lower, Electronic Arts.

Chapter 8. 98, Upper left, Hewlett-Packard (Integral PC
at Krug Winery). Upper right, Chrysler Corporation.
Lower, Hewlett-Packard.

Chapter 9. 130, Upper, General Electric Corporation.
Lower, Hewlett-Packard.

Chapter 10. 144, Upper, Hewleti-Packard. Lower, Adrian
Bradshaw/Visions.

Chapter 11. 164, Upper left, Apple Computer, Inc.
Upper right, Hewlett-Packard. Lower, Apple Computer,
Inc.

Chapter 12. 180, Upper, J. Ross Baughman/Visions.
Lower, IBM.

Chapter 13. 200, Upper, Evans & Sutherland. Middle,
Evans & Sutherland. Lower, Manos/Magnum —
Burroughs.

Chapter 14. 226, all courtesy of Hewilett-Packard.
Chapter 15. 254, Upper, Texas Instruments. Lower,
Koala Technologies.

Chapter 16. 266, Upper, Control Data. Lower, Commo-
dore Electronics Ltd.

Chapter 17. 294, Upper, Prime Comp., Inc. Lower,
Apple Computer, Inc.

Chapter 18. 308, Upper, Kurzweil Music Systems, Inc.
Middle, Hewlett-Packard. Lower, AT&T.

viii

Preface

Throughout the book we have attempted to conform to the most common BASIC
usage. In most cases, our presentation of BASIC conforms to the American National
Standards Institute (ANSI) standard for BASIC. Phrases such as ““Your system may allow
you to . . . ” indicate that the BASIC feature being introduced is not included in the
BASIC standard. The material contained in this book, including the problem sets, has been
carefully organized so that topics that are not a part of standard BASIC may be omitted
with no loss in continuity.

A few remarks are appropriate concerning the order in which we have introduced the
elements of BASIC. The INPUT statement (Chapter 5) is introduced early, before the
READ and DATA statements, to emphasize the interactive nature of BASIC. In Chapter 6,
the GOTO statement and a fimited form of the [F statement are used to introduce the
concept of a program loop. WHILE loops are also described in Chapter 6, since many
versions of BASIC allow the WHILE statement as a convenient alternative to the IF and
GOTO statements when coding loops. Chapter 7 expands upon the description of the
PRINT statement given in Chapter 3 and introduces the PRINT USING statement. These
output statements are introduced early so that well-formatted output can be illustrated in
the examples and can be produced while carrying out all subsequent programming exer-
cises. The general form of the IF statement and its use as a selection statement are described
in Chapter 8. The BASIC statements described in Chapters 3-8 were selected because they
allow meaningful structured programs to be written. Section 8.8 describes how structured
algorithms can be coded as structured BASIC programs. Chapters 9~11 (FOR loops,
READ/DATA statements, and subroutines) complete what is sometimes called Elemen-
tary BASIC. Selecting an order in which to present the remaining BASIC statements was
not so easy. So that a person using this book will not be tied down to the order we have
chosen, the introductory material for the remaining BASIC statements is presented in a
way that allows these statements to be taken up in any order after Chapter 11.

» Special Features

Several new features have been included in this revision. Following are brief descriptions of
the more significant changes.

An Expanded introductory Chapter on Problem Solving

Fundamental problem solving principles, including the top-down development of algo-
rithms, are discussed in Chapter 2. Greater emphasis is placed on input/output specifica-
tion, modularization, and stepwise refinement. The chapter also explains the sense in
which computer programs and algorithms are equivalent and illustrates the steps leading to
the discovery of algorithms.

improved Examples and Programming Exercises

Worked-out examples and programming exercises that illustrate application areas not
covered in the previous edition have been added. Several examples and exercises, some of
which were redundant, have been deleted. Also, many new programming exercises that are
suitable for one- or two-week programming projects have been added to the problem sets.

A Separate Introductory Chapter on Loops

The IF and GOTO statements are used in Section 6.1 to introduce the concept of a program
loop. The use of IF as a selection statement is taken up separately in Chapter 8. Section 6.2
describes the WHILE statement and explains its use as an alternative to the IF and GOTO
statements in coding loops. This important structured control statement is allowed in
many versions of BASIC.

Preface ix
A New Section on Menu-Driven Programs

The concept of a menu-driven program is described early (Chapter 7) and illustrated in
several examples in the subsequent chapters. Writing BASIC code for menu-driven pro-
grams by using the ON GOTO statement is described in Section 7.8, and by using the ON
GOSUB statement in Section 11.3. Programming exercises that call for menu-driven
programs have been added to many of the problem sets beginning with Chapter 7.

An Expanded and Earlier Chapter on Subroutines

The topic of subroutines is taken up much earlier in this edition. Subroutines are described
in Chapter 11, just after the READ and DATA statements, and their application is illus-
trated in many of the subsequent chapters.

A New Section on Tabie Processing

Section 14.3 illustrates the application of the array data structure to programming tasks
that involve tables. The problem of deciding whether or not to use arrays to store tabular
data is discussed and illustrated in the worked-out examples. New programming exercises
that involve table processing have been included in the problem sets.

Increased Emphasis on the Application of String Variables

Many new string processing examples and programming exercises have been added. String
arrays, which in the previous edition were introduced in a separate chapter after the
numerical arrays, are now taken up with numerical arrays in a single chapter. The string
conversion functions CHRS$, ASC, STR$, and VAL are described earlier, with all other
string and string-related functions, and their applications have been expanded to several
new topics, including the conversion of lowercase letters to uppercase.

An Improved Chapter on Data Files

The chapter on data files has been rewritten with greater emphasis on the use of the
end-of-file functions and the ON ERROR GOTO statement. Error trapping and handling
are covered in more detail. Other topics have been retained from the previous edition,
including file maintenance and a discussion of differences in how BASIC systems handle
data files.

» Acknowledgments

While preparing this revision, we were fortunate to have the comments of many users ofthe
second edition. Their thoughtful criticisms and suggestions were carefully considered and,
in many instances, incorporated as changes in the book. We are grateful for this assistance.
So that we can continue to make improvements for future readers, we would welcome
hearing of your experiences with thisedition. A reader response form is provided at the end
of the book for this purpose.

We wish to take this opportunity to acknowledge the helpful comments of our re-
viewers: Boyd Ghering, Delaware Valley College; Richard A. Hatch, San Diego State
University; John Myer, DeVry Institute of Technology; and Herbert F. Rebhun, Univer-
sity of Houston. We feel that their many thoughtful suggestions have led to a greatly
improved book.

A very special thanks goes to Patricia Shea, our typist, proofreader, debugger, and
general assistant. Her eleven years of cheerful cooperation are greatly appreciated. Finally,
we are happy to acknowledge the fine cooperation of the staff at Brooks/Cole Publishing
Company.

Robert J. Bent
George C. Sethares

xii Contents

4.8 On Writing Your First Program 44
49 Problems 48
4.10 Review True-or-False Quiz 50

Chapter 5 Interacting with the Computer 51

5.1 The INPUT Statement 51
5.2 Problems 56
5.3 Review True-or-False Quiz 57

Chapter 6 A First Look at Loops 58

6.1 Coding Loops with the IF and GOTO Statements 58
6.2 WHILE Loops 66

6.3 Problems 68

6.4 Review True-or-False Quiz 70

Chapter 7 More on the PRINT Statement 72

7.1 Displaying More Values on a Line 72
7.2 Suppressing the Carriage Return 75
7.3 Problems 76
7.4 The TAB Function 78
7.5 Problems 79
7.6 PRINT USING Statement 80
7.7 Problems 86
7.8 Menu-Driven Programs 88
7.9 Screen Displays 91
7.10 Problems 93
7.11 Review True-or-False Quiz 94

Chapter 8 The Computer as a Decision Maker 96

8.1 [IF as a Selection Statement 96
8.2 Logical Expressions 102
8.3 Problems 105
8.4 Flowcharts and Flowcharting 107
8.5 Problems 113
8.6 Summing with the IF and WHILE Statements 114
8.7 Problems 118
8.8 Structured Programming 119
8.9 Problems 124
8.10 Review True-or-False Quiz 128

Chapter 9 Loops Made Easier 129

9.1 FOR Loops 129

9.2 Problems 135

9.3 Nested Loops 137

9.4 Problems 140

9.5 Review True-or-False Quiz 142

Chapter 10

10.1
10.2
10.3
10.4
10.5

Chapter 11

11.1
11.2
11.3
11.4
11.5

Chapter 12

12.1
12.2
12.3
12.4
12.5
12.6

Chapter 13

13.1
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10

Chapter 14

14.1
14.2
14.3
14.4
14.5
14.6
14.7

Chapter 15

15.1
15.2

Contents

Data as Part of a Program 143

The READ and DATA Statements 143
Problems 150

The RESTORE Statement 153
Problems 159

Review True-or-False Quiz 161

Subroutines 162

The GOSUB and RETURN Statements 162
Problems 169

The ON GOSUB Statement 171

Problems 176

Review True-or-False Quiz 178

Numerical Functions 179

Built-In Numerical Functions 179

Problems 186

User-Defined Functions: The DEF Statement 189
Multiple-Statement Functions 192

Problems 195

Review True-or-False Quiz 198

More on Processing String Data 199

String and String-Related Functions 199
Combining Strings (Concatenation) 204

The Search Function INSTR 205

Problems 207

The BASIC Character Set 210

Problems 212

BASIC Conversion Functions 213

User-Defined Functions Involving String Data 219
Problems 222

Review True-or-False Quiz 223

Arrays 224

One-Dimensional Arrays 224

The DIM Statement (Declaring Arrays) 231
Table Processing 233

Problems 238

Two-Dimensional Arrays 242

Problems 247

Review True-or-False Quiz 250

Sorting 252

The Bubble Sort 252
The Shellsort and Binary Search Algorithms 258

xiii

xiv

Contents

15.3
15.4

Chapter 16

16.1
16.2
16.3
16.4
16.5
16.6
16.7
16.8

Chapter 17

17.1
17.2
17.3
17.4
17.5
17.6
17.7

Chapter 18
18.1

18.2
18.3
18.4
18.5
18.6
18.7

Appendix A
Appendix B
Appendix C

Problems 260
Review True-or-Faise Quiz 263

Data Files 264

File Statements 265

Detecting the End of a Sequential File 271
Problems 276

File Maintenance 279

Problems 285

External Sorting— The Merge Sort 287
Problems 290

Review True-or-False Quiz 291

Random Numbers and Their Application 292

The RND Function 292
Problems 296

Random Integers 298
Simulation 299

A Statistical Application 301
Problems 302

Review True-cv-False Quiz 304

Matrices 306

Assigning Values to a Matrix: The MAT READ and MAT INPUT
Statements 306

The MAT PRINT Statement 309

One-Dimensional Matrices 310

Matrix Operations 310

Matrix Functions 313

Problems 316

Review True-or-False Quiz 318

A Typical Session at the Computer Terminal 319
BASIC Language Cross-Reference Guides 323
Answers to Selected Problems 333

Index 347

10 Chapter I Data Processing

In addition to a BASIC interpreter or compiler, your system will include other systems
programs. These will be programs that produce listings of your programs, ‘“‘save” your
programs on secondary storage devices for later use, assist you in finding errors in the
programs you write, and, most important of all, a program that exercises general control
over the entire system. This last program is called the operating system. It allows you to
issue commands to the computer to “call up” and execute any of the other systems
programs provided.

The emergence of computer science as a new discipline has been accompanied by a
proliferation of new words and expressions. Although they are useful for talking about
computers, they are for the most part absolutely unnecessary if your objective is to learn a
computer language such as BASIC to help you solve problems. In our discussion of
computer hardware and software, we have introduced only fundamental concepts and
basic terminology. Even so, if this is your first exposure to computers, you may feel lost in
this terminology. Don’t be disheartened: Much of the new vocabulary has already been
introduced. You will become more familiar with it and recognize its usefulness as you
study the material in the subsequent chapters. You will also find it helpful to reread this
chapter after you have written a few computer programs.

» 1.3 Topics for Independent Study

Prepare a short written or oral report for each suggested title. Reports 1 -9 concern the
history and evolution of computer technology; the remaining reports concern applications
of computers.

1. The UNIVAC I: Its development and applications
2. ENIAC: The first large electronic computing machine
3. John von Neumann and the first stored-program computers
4. IBM’s entry into the computer field
5. The Jacquard loom
6. Four generations of computers
7. The “chip”: Microminiatured circuits
8. Computer languages: Machine versus high level
9. FORTRAN: The first high-level computer language
10. Personal computers and how they are used
11. Video display devices and their applications
12. Computers in small businesses
13. Database applications
14. Computers in the classroom
15. Computers in banking
16. Computers in the laboratory
17. Computers in entertainment
18. Computers in space
19. Computer networks
2¢. Distributed data processing

» 1.4 Review True-or-False Quiz

1. Any electronic device that can process data is called a computer. T F
2. Input/output devices, external storage devices, and the central processing unit are

called computer peripherals. T F
3. Anautomobile that usesa microprocessor to control the gasand air mixture is correctly

referred to as a computer system. T F

4. A computer system must contain at least one printer. T F

~l

10.
11.

12.

13.

1.4 Review True-or-False Quiz

. Disk-storage units are called random access devices because information stored on a

disk is accessed by randomly searching portions of the disk until the desired data are
found.

. Tape units are called sequential access devices because the computer reads information

from a tape by reading through the tape until the desired data are found.

. The term RAM refers to disk-storage units.
. There is a significant difference between memory units called RAM and memory units

called ROM.

. The function of a BASIC compiler is to transtate BASIC programs into machine

language.

The terms compiler and interpreter are used synonymously.

To solve problems using the BASIC language, you must know and understand what a
compiler is or what an interpreter is.

A computer program written to automate a payroll system is an example of a systems
program.

An operating system is a computer systern.

11

» REMARK

2.1 Algorithms 15

b3.1. Multiply the salary by 0.02 to obtain a tentative bonus.
b3.2. If the tentative bonus is less than $400, set the bonus to $400; otherwise make the
bonus equal to the tentative bonus.

Making this change, or refinement, we obtain the following more detailed algorithm for
Step (b):

bl. Open the employee ledger.
b2. Read the next employee’s name and salary.
b3.1. Multiply the salary by 0.02 to obtain a tentative bonus.
b3.2. If the tentative bonus is less than $400, set the bonus to $400; otherwise make the
bonus equal to the tentative bonus.
b4. Write the employee’s name, salary, and bonus on the bonus sheet.
b5. If all bonuses have not been determined, return to Step (b2).
b6. Close the ledger.

Our final detailed algorithm consists of eight steps— Step (a) followed by this seven-step
algorithm for carrying out Step (b).

In this example, we started with a problem statement describing the task to be carried out
(produce a year-end bonus report) and ended with an algorithm describing how to ac-
complish this task. The steps you take while designing an algorithm are called a problem
analysis. For simple problems, a description of the input and output may lead directlytoa
final algorithm. For more complicated problems, a thorough analysis of alternative ap-
proaches to a solution may be required. In any case, the term problem analysis refers to the
process of designing a suitable algorithm.

The method used to design an algorithm for Example 1 illustrates three important
principles of problem solving:

1. Begin by describing the input (information needed to carry out the specified task)
and the output (the results that must be obtained). In the example, we described the input
as salary information to be read from the employee ledger and the outputasa table showing
the names, salaries, and bonus amounts for the employees. An essential first step in the
problem-solving process is to read and understand the problem statement. It is unlikely
that a correct algorithm will be found if the task to be performed is not understood exactly.
Giving a clear and precise description of the inpur and outpul is an effective way to acquire
an understanding of a problem statement.

2. Identify individual subtasks that must be performed while carrying out the speci-
fied task. In Example 1 we identified the following two subtasks:

a. Write the title and column heading for the bonus sheet.
b. Read the ledger to determine and fill in the name, salary, and bonus for each em-
ployee.

If a complicated task can be broken down into simpler more manageable subtasks, the job
of writing an algorithm can often be simplified significantly: You simply describe the order
in which the subtasks are to be carried out. This was especially easy to do in Example
| — simply carry out subtask (a) followed by subtask (b). The process of breaking down a
1ask into simpler subtasks is called problem segmentation or modularization — the subtasks
are sometimes called modules. As in Example I, the details of how to carry out these
modules can be worked out after an algorithm has been found.

3. If more details are needed in an algorithm, include the additional details separately
for each step. In Example 1 we started with the two-step algorithm:

a. Write the title and column headings for the bonus sheet.
b. Read the ledger to determine and fill in the name, salary, and bonus for each em-
ployee.

Next, we included more detail in Step (b) by breaking it down into these six steps:

16 Chapter 2

EXAMPLE 2

PROBLEM
ANALYSIS

Problem Solving: Top-Down Approach

bl. Open the employee ledger.

b2. Read the next employee’s name and salary.

b3. Determine the employee’s bonus.

b4. Write the employee’s name, salary, and bonus on the bonus sheet.
bs, If all bonuses have not been determined, return to Step (b2).

b6. Close the ledger.

Finally, we included more detail in the algorithm by rewriting Step (b3) as follows:

b3.1. Multiply the salary by 0.02 to obtain a tentative bonus.
b3.2. If the tentative bonus is less than $400, set the bonus to $400; otherwise make the
bonus equal to the tentative bonus,

The important thing to notice is that we introduced details into the algorithm by refining
the steps separately —that is, by breaking down the individual steps one at a time —and
not by combining steps or otherwise changing the algorithm. This method of designing a
detailed algorithm is called the method of stepwise refinement. You begin with a simple
algorithm that contains few details but that you know is correct. If necessary, you refine one
or more of the steps to obtain a more detailed algorithm. If even more detail is needed, you
refine one or more of the steps in the derived algorithm. By repeating this process of
stepwise refinement, you can obtain an algorithm with whatever detail is needed. More-
over, however complicated the final algorithm, you can be sure that it is correct simply by
knowing that you started with a correct algorithm and that each step was refined correctly.

The approach to problem solving used in Example | is called the top-down approach
to problem solving or the top-down design of algorithms. The expression fop-down comes
from using the methods of modularization and stepwise refinement. You start at the top
(the problem statement), break that task down into simpler tasks, then break those tasks
into even simpler ones, and continue the process, all the while knowing how the tasks at
each level of refinement combine, until the tasks at the lowest (final) level contain whatever
detail is desired. The advantages to be gained by adhering to the three problem-solving
principles of the top-down approach will become more evident as you work through the
examples and problems in this book. The following example should help you better
understand these three principles and their application.

Awholesale firm keeps a list of the items it sells in a card file. For each item, there is asingle card
containing a descriptive item name, the number of units in stock (this can be zero), the number of
the warehouse in which the item is stored, and certain other information that will not concern us.
Our task is to prepare a list of out-of-stock items for each warehouse.

The problem statement says that a separate list of out-of-stock items is needed for each
warehouse. Thus, we will need to know the warehouse numbers. Let’s assume we are told
there are three warehouses numbered 127, 227, and 327. With this information, we can
include these numbers as input rather than reading through the entire card file to deter-
mine them. We can now specify the input and output for our algorithm:

Input: Warehouse numbers 127, 227, and 327.
Card file: one card for each item.

Output: Three reports formatted as follows:

WAREHOUSE 127
(Out-of-stock items)

Hammers— Model 2660
Hammers-— Model 3375
Saws-— Model 1233

THE
ALGORITHM

» REMARK

2.1 Algorithms 17

WAREHOUSE 227
(Out-of-stock items)

WAREHOUSE 327
(Out-of-stock items)

Having given a precise description of the input and output, we should determine what
subtask or subtasks must be performed. The problem statement specifies that three reports
are to be produced, one for each warehouse. If we arrange things so that reports are
produced one at a time (this is a common practice when using computers), we can use the
same procedure for each one. Specifically, for each warehouse number W, we will carry out
the following subtask (named R for report):

Subtask R. Prepare the report for warchouse W.

Of course, we will need to include details describing how to carry out this subtask. But even
without these details, we can write a simple algorithm that obviously is correct:

Assign 127 to W.
Carry out Subtask R.
Assign 227 to W,
Carry out Subtask R.
Assign 327 to W.
Carry out Subtask R.

-0 an TR

Notice that Subtask R specifies that a report is to be prepared. As in Example 1, we can
break this subtask down into two subordinate subtasks R1 and R2 as follows:

R1. Write the report header for warehouse W,
R2. Read through the card file to complete the report.

At this point, we should recognize that Step R 1 requires no additional details— the output
specification shows how the report header should be formatted. We should, however,
include more details in Step R2. In the following algorithm for Subtask R, Steps R2.1 -
R2.4 show one way to carry out Step R2:

R1. Write the report header for warehouse W.
R2.1. Turn to the first card.
R2.2. Read the warchouse number (call it N) and the units-on-hand figure (call it U).
R2.3. If N = Wand U = 0, read the item name and write it on the report.
R2.4. If there is another card, turn to it and continue with Step R2.2.

Our final algorithm for the given problem statement consists of two parts: the original
six-step algorithm [Steps (a)—(f)] that tells us when (but not how) to carry out Subtask R
and the five-step algorithm (Steps R1, R2.1-R2.4) that shows us how Subtask R can be
accomplished.

Let’s review the problem analysis carried out in this example:

Input/output specification. Our atiempt to give a precise description of the input and
output led us to include the warehouse numbers 127, 227, and 327 as input. As a conse-
quence, the final algorithm is simpler than what would have been obtained had we begun
by reading the entire card file just to determine the warchouse numbers.

Modularization. QOur attempt to identify subtasks led us to conclude that there was but
one major subtask, namely,

18 Chapter 2 Problem Solving: Top-Down Approach

p 2.2 Variables

EXAMPLE 3

PROBLEM
ANALYSIS

Subtask R. Prepare the report for warehouse W.

By using this subtask, it was easy to write an algorithm [Steps (a)~-(f)] that lacked only in
the details needed to carry out Subtask R.

Stepwise refinement. Our next job was to show how to carry out Subtask R. We began by
breaking it down into these two subordinate subtasks:

Ri. Write the report header for warehouse W.
R2. Read through the card file to complete the report.

Notice that this two-step refinement of Subtask R represents an application of the principle
of modularization applied to Subtask R. At this point we recognized that only Step R2 was
lacking in details. We supplied these details by writing a short four-step algorithm (Steps
R2.1-R2.4) for Step R2.

Algorithms can often be stated clearly if symbols are used to denote certain values. Symbols
are especially helpful when used to denote values that may change during the process of
performing the steps in an algorithm. The symbols W, N, and U used in Example 2
illustrate this practice.

A value that can change during a process is called a variable. A symbol used to denote
such a variable is the name of the variable. Thus W, N, and U in Example 2 are names of
variables. It is common practice, however, to refer to the symbol as being the variable itself,
rather than just its name. For instance, Step (a) of the algorithm for Example 2 says to
assign 127 to W. Certainly this is less confusing than saying “assign 127 to the variable
whose name is W.”

The following two examples further illustrate the use of variables in algorithms.

Let's find an algorithm to determine the largest number in a list of numbers.

Input: A list of numbers.
Output: The largest number in the list.

One way to determine the largest number in a list of numbers is to read the numbers one at
a time, remembering only the largest of those already read. To help us give a precise
description of this process, let’s use two symbols:

L to denote the largest of the numbers already read
X to denote the number currently being read

The following algorithm can now be written:

Read the first number and denote it by L.

Read the next number and denote it by X.

If X is larger than L, assign X to L.

If all numbers have not been read, go to Step (b).
Write the value of L and stop.

oRoTE

To verify this algorithm for the list of numbers
4,5,3,6,6,2,1,8,7,3

we simply proceed step by step through the algorithm, always keeping track of the latest
values of L and X. An orderly way to do this is to complete an assignment table, as follows:

22

Chapter 2

Problem Solving: Top-Down Approach

5.

6.
7.
8.

If the numbers of hours shown on the first four time cards are 20, 32, 40, and 43, respectively,
what amounts will be written on these cards?

What is the base hourly rate for each employee?

What is the overtime rate?

Explain Step (c).

In Problems 9—12, what will be printed when each algorithm is carried out?

9.

10.

11.

12.

LetSUM = Oand N = [.

Add N to SUM.

. Increase N by 1.

. IfN = 6, return to Step (b).

. Print the value SUM and stop.

. LetPROD = Jand N = 1.

. Print the values N and PROD on one line.
Increase N by 1.

Multiply PROD by N.

IfN =< 5, return to Step (b).

Print the values of N and PROD on one line.
Stop.

LetA = I,B = l,and F = 2.

. If F > 50, print the value F and stop.

. Assign the values of B and F to A and B, respectively.
. Evaluate A + B and assign this value to F.
Return to Step (b).

Let NUM = 56,SUM = l,and D = 2.

. If D is a factor of NUM, add D to SUM and print D.
. Increase D by 1.

. IfD = NUM/2, return to Step (b).

. Print the value SUM and stop.

TLr o s T

.

Qﬁ-ﬂﬂ':ﬁfeﬁ-ﬁd‘?‘ﬂ_ﬂ_—qp_ﬁ-n

In Problems 13- 19, write an algorithm to carry out each task specified.

13.

14.

15.

i6.

17.

18.

A retail store’s monthly sales report shows, for each item, the cost, the sale price, and the number
sold. Prepare a three-column report with the column headings ITEM, GROSS SALES, and
INCOME.

Each of several 3 X 5 cards contains an employee’s name, Social Security number, job classifi-
cation, and date hired. Prepare a report showing the names, job classifications, and complete
years of service for employees who have been with the company for more than 10 years.

A summary sheet of an investor’s stock portfolio shows, for each stock, the corporation name,
the number of shares owned, the current price, and the earnings as reported for the most
recent year. Prepare a six-column report with the column headings CORP. NAME, NO. OF
SHARES, PRICE, EARNINGS, EQUITY, and PRICE/EARNINGS. Use this formula:

Equity = number of shares X price

Each of several cards contains a single number. Determine the sum and the average of all the
numbers. (Use a variable N to count how many cards are read and a variable SUM to keep track
of the sum of numbers already read.)

Each of several cards contains a single number. On each card, write the letter G if the number is
greater than the average of all the numbers; otherwise, write the letter L. (Y ou must read through
the cards twice: once to find the average and again to determine whether to write the letter G or
the letter L on the cards.)

A local supermarket has installed a check validation machine. To use this service, a customer
must have previously obtained an identification card containing a magnetic strip and a four-
digit code. Instructions showing how to insert the identification card into a special magnetic-
strip reader appear on the front panel. To validate a check, a customer must present the identifi-
cation card to the machine, enter the four-digit code, enter the amount of the check, and place
the check, blank side toward the customer, in a clearly labeled punch unit. To begin this process,

2.4 Review True-or-False Quiz 23

the CLEAR key must be pressed, and, after each of the two entries has been made, the ENTER
key must be pressed. Prepare an algorithm giving instructions for validating a check.

19. Write an algorithm describing the steps to be taken to cast a ballot in a national election. Assume
that a person using this algorithm is a registered voter and has just entered the building in which
voting is to take place. While in the voting booth, the voter should simply be instructed to vote.
No instructions concerning the actual filling out of a ballot are to be given.

» 2.4 Review True-or-False Quiz

1. The terms algorithm and process are synonymous. T F
2. The following steps describe an algorithm:
LetN = 0.
Increase N by 10.
Divide N by 2.
If N < 10, go to Step (b).
e. Stop.
A computer program should describe an algorithm.
Every algorithm can be translated into a computer program.
. The expression heuristic process refers to an algorithm.
. Itis always easier to verify the correctness of an algorithm that describes a specific task
than the correctness of a more general algorithm.
. The term variable refers to a value that can change during a process.
. A problem analysis is the process of discovering a correct algorithm.
9. The method of stepwise refinement is a method of problem solving in which successive
steps in an algorithm are combined to produce an algorithm that is easier to read. T F
10. Top-down design involves the process of stepwise refinement. T F

e Tp

® I SN AW
e e e e
T T T T T T

30 Chapter 3 A First Look at BASIC

» 3.4 Problems

1. Evaluate the following:

a. 2+3%5 b, S*7-2 c. —4+2

d. - (4+2) e. —3%5 f. =372

g 1+4273%2 h. 6/2%*3 i, 1/2/72

j. —2%*3/2%3 k. 2°2"3 . (2+(3%4-5))70.5
2.ForA = 2.B = 3,and X = 2, evaluate each of the following:

a. A+B/X b. (A+B)/2%X c. B/A/X

d. B/ (A*X) e. A+X"3 f. (A+B)Y "X

g. B*A/X h. B+A/B-A i. AB+X
3. Some of the following are not admissible BASIC expressions. Explain why.

a. (Y+Z)X b. X2*36 C. A*(Z- 1_78)

d X"-2 e. A+-B f. —(A+2B)

g. 2X+2 h. X2+2 i. X=2~2

j. A12+B3 k. A+(+B) 1. A2-(-A2)

m. 5E1.0 n —920.5 0. —971/2
4. Write BASIC expressions for these arithmetic expressions.

a. 0.06P b. 5x + 35y c. p(1 + 7y

f a c a+ b
L — e-3+2 Lo +d
g ax’ + bx + ¢ h. V& — dac i a_:TB

» 3.5 The LET Statement: Assigning Values to Variables

In Section 3.3 you saw how to write arithmetic expressions in a form acceptable to the
computer. You will now learn how to instruct the computer to evaluate such expressions.

A BASIC program statement, also called a programming line, consists of an instruc-
tion to the computer preceded by an unsigned integer called the line number. The general
form is

line number BASIC instruction
For example,
100 LET A=2+5

is a BASIC statement with line number 100. This statement, called a LET statement, will
cause the computer to evaluate the sum 2 + 5 and then assign this value to A.

A BASIC program is a collection of BASIC program statements. The instructions are
executed by the computer in the order determined by increasing line numbers, unless some
instruction overrides this order. In this book we’ll often use the expression BASIC state-
ment to refer to a BASIC program statement without its line number. This practice
conforms to current programming terminology.

The general form of our first BASIC statement, the LET statement, is

InLETY = e
or, more simply,
Inv = e (LET is optional)

where In stands for line number, v denotes a variable name, and e denotes a BASIC
expression that may simply be a constant. This statement directs the computer to evaluate

