PROTOPLASMA MONOGRAPHIEN

ZWANZIGSTER BAND

Physik und Chemie des Zellkernes

von

Petr F, Milovidov

Erster Teil

Gebrüder Borntroeger Berlin-Nikolassee

PHYSIK UND CHEMIE DES ZELLKERNES

von

Prof. Dr. PETR F. MILOVIDOV

Prag

Erster Teil

Mit 33 Abbildungen und 1 Farbtafel

Berlin - Nikolassee Naturwissenschaftlicher Verlag vorm. Gebrüder Borntraeger 1949

Alle Rechte,

insbesondere das Recht der Übersetzung in fremde Sprachen, vorbehalten Copyright 1949 by Naturwissenschaftlicher Verlag vorm. Gebrüder Borntraeger in Berlin-Nikolassee

Protoplasma-Monographien

Unter besonderer Mitwirkung zahlreicher Zellforscher Herausgegeben von F. WEBER (Graz) und J. SPEK (Rostock)

Band 20

PHYSIK UND CHEMIE DES ZELLKERNES

von

Prof. Dr. PETR F. MILOVIDOV

Prag

Mit 33 Abbildungen und 1 Farbtafel

Berlin-Nikolassee Naturwissenschaftlicher Verlag vorm. Gebrüder Borntraeger 1949

PROTOPLASMA-MONOGRAPHIEN

Band 20

PHYSIK UND CHEMIE DES ZELLKERNES

von

Prof. Dr. PETR F. MILOVIDOV Prag

Vorwort

Die zytologische Literatur ist in der letzten, verhältnismäßig kurzen Zeit durch eine Reihe von wertvollen Monographien hervorragender Fachleute (SHARP 1926, SHARP & JARETZKY 1931, NĚMEC 1930, DARLINGTON 1932, GUIL-LIERMOND & MANGENOT & PLANTEFOL 1933. GEITLER 1934a, PFEIFFER 1940) bereichert worden. Auch die physikochemischen Eigenschaften der Zelle im allgemeinen sind schon monographisch bearbeitet worden (LEPESCHKIN 1924. 1938, KIESEL 1930, KÜSTER 1935), doch sind die den Kern betreffenden Fragen in diesen Darstellungen nur zum Teil berührt worden. Die überragende Arbeit von TISCHLER (1921. 1934, 1942), auf die die gegenwärtige Kernkunde stolz sein kann, ist, abgesehen von ihrem bedeutenden Interesse für physikochemische Kernfragen doch vorzugsweise morphologisch orientiert. Mit den physikochemischen Eigenschaften des Zellkernes hat sich bis jetzt keine eigene Monographie beschäftigt, Eine der letzten Zusammenfassungen, die die Chemie des Kernes berührt, ist die kurze Darstellung von PRATJE (1920). Seitdem hat sich aber hinsichtlich der Physik und der Chemie des Zellkernes bedeutendes Material angesammelt.

Ich bin der Ansicht, daß die Klärung der physikochemischen Grundlagen der lebendigen Masse eine der wichtigsten Aufgaben der modernen Lebensforschung darstellt und daß der Zellkern speziell in dieser Hinsicht eine ganz besondere Aufmerksamkeit verdient. Kürzlich habe ich dieser Frage eine kurze Uebersicht in französischer Sprache (1936e) und speziell der Nuklealreaktion eine Monographie in russischer Sprache (1936d) gewidmet. Mit Rücksicht auf die beschränkte Zugänglichkeit letzterer Monographie sowie der Bedeutung des Kernes im Zelleben scheint mir eine systematische und kritische Zusammenstellung aller einschlägigen Angaben durchaus zeitgerecht zu sein. Diese Ueberzeugung hat mich bewogen, den Vorschlag der "Protoplasma"-Redaktion, eine Monographie über die Physik und Chemie des Zellkernes zu schreiben, ohne Zögern anzunehmen,

Hauptaufgabe der Arbeit ist es, eine kritische Zusammenstellung der bis jetzt über den Zellkern vom Standpunkt der Physik und Chemie aus gewonnenen Ergebnisse zu geben, um dem Leser eine Gesamtvorstellung vom Zellkern als einem physikochemischen System zu vermitteln, wie dies ja auch für das Zytoplasma bereits versucht worden ist. Als schwerwiesende Hindernisse, dieses Ziel zu erreichen, sind einerseits die Vielfältigkeit der Fragen und die Menge der ihnen gewidmeten Arbeiten und andererseits der Mangel unserer Kenntnisse in einzelnen Punkten anzusehen. Mit Recht hat HEILBRUNN (1928, S. 15 u. 83) auf diesen Mangel betreffs der physikalischen und NEMEC (1910, S. 296) betreffs der chemischen Eigenschaften des Zellkernes hingewiesen. Dazu kommt noch, daß viele ältere Angaben bis jetzt nicht nachgeprüft worden sind und als solche übernommen werden müssen. Vieles, was das Zytoplasma betrifft, øilt wohl auch für den Zellkern, aber es wäre natürlich ganz unzulässig, alles ohne weiteres auf den Kern zu übertragen. Diese Umstände bedingen den ungleichen Wert des Inhaltes einzelner Kapitel in qualitativer und quantitativer Hinsicht. Bei der Gruppierung des Materials des ersten Teiles wurde als Hauptmoment das Bestreben, die Kerneigenschaften möglichst auf die einfachsten physikochemischen ja sogar auf rein physikalische Eigenschaften zurückzuführen ins Auge gefaßt, um eine Standardisjerung unserer Kenntnisse und physikalisch möglichst einfache Vorstellungen zu erhalten. Natürlich kann dieses Ziel nur in sehr bescheidenem Maße erreicht werden. Dabei darf man aber nicht vergessen, daß die Zellkolloide ein sehr kompliziertes, nicht homogenes System darstellen, in dem die physikalischen Werte schwer zu bestimmen sind. Bedient man sich z. B. einer physikalischen Formel für die Viskositätsbestimmung des Plasmas, so muß man sich bewußt sein, daß die gegebenen Bedingungen so weit von den ideellen physikalischen entfernt sind, daß die erhaltenen Zahlen ganz anders ausgewertet werden müssen und daß die in der Physik gebräuchlichen Symbole hier nur bedingt als solche anzusehen sind.

Die Behandlung rein morphologischer Fragen wurde gewissentlich in dieser Monographie unterlassen. Doch erscheint es ganz unvermeidlich, Fragen über die Struktur der Chromosomen oder des ruhenden Kernes anzuschneiden, da diese Fragen mit denen über die kolloiden Eigenschaften der Zellkernstrukturen oder die optischen Beschaffenheiten zu eng verknüpft sind. Auch die Form und Größe des Kernes und ihre Aenderungen, also rein morphologische Themen mußten kurz neben anderen physikalischen Beschaffenheiten (Aggregatzustand, Dichte usw.) berührt werden. Die Unmöglichkeit rein physikalische Eigenschaften von den physikochemischen und diese

Vorwort VII

wiederum von den rein chemischen abzugrenzen, hat notwendigerweise eine Verflechtung des Inhaltes der Kapitel sowie Wiederholungen zur Folge. Auch war es schwierig, einzelne Angaben in dieses oder ienes Kapitel einzureihen, da sie sich eigentlich auf mehrere zugleich beziehen. So ist z. B. die im physikalischen Teil erörterte Frage des Stoffaustausches zwischen Kern und Zytoplasma eher chemischer Art, sie ist aber gleichzeitig mit dem Austritt der Kernstoffe in das Zytoplasma (Chromidialtheorie) ebenso mit den osmotischen Eigenschaften des Kernes eng verknüpft. Dasselbe gilt auch für die metaplasmatischen Kernelemente und die Nukleoproteiden-Synthese. Der Chromidialtheorie ist außerdem ein besonderer Abschnitt im chemischen Teil der Arbeit im Zusammenhans mit der Besprechung der Nuklealreaktion gewidmet. Die Aenderung der Kerngröße ist im Abschnitt über die osmotischen Eigenschaften, ferner im Kapitel über die Kerngröße und beim Stoffaustausch zwischen Kern und Plasma berührt. Die Wasserstoffionenkonzentration bildet einen besonderen Absatz, doch diese Frage mußte auch in weiteren Kapiteln berührt werden.

Da die ganze Darstellung sich auf ausführliches Tatsachenmaterial stützt, hat sie teilweise einen das Thema fast erschöpfenden Charakter, was es dem Leser ermöglichen wird, Literaturangaben über einzelne den Kern betreffende Fragen leicht zu finden.

Ich bin mir völlig bewußt, daß die Aufgabe, eine erschöpfende Monographie über ein so wichtiges und umfangreiches Gebiet zusammenzustellen, von einem einzelnen Autor nicht leicht zu lösen ist, deswegen bitte ich, dieses Buch eher als ein "Skelett" oder "Gerüstwerk" anzusehen, in welches zukünftige Ergebnisse sich eingliedern lassen werden und nach welchem sich andere Autoren richten können. Von diesem Standpunkt aus ist das ganze Schema der vorliegenden Arbeit zu verstehen, in der ich die Angaben möglichst nach dem System der Physik (I. Teil) darzulegen im Sinne hatte. Die Monographie stellt eine vorwiegend botanisch orientierte Uebersicht dar, da mir der botanische Zweig der Zvtologie näher liegt. Besonders wurde die Nuklealreaktion, von der es bis jetzt überhaupt keine Zusammenstellung der Ergebnisse gab und mit der ich mich auch selbst viel beschäftigt habe, monographisch behandelt (Kapitel XII).

Ich hoffe, daß meine Arbeit, trotz unvermeidlicher Mängel, Allen, die sich mit der Erforschung des Zellkernes beschäftigen, von Nutzen sein kann. Herrn Prof. Fr. Weber bin ich sehr für seine vielseitigen Bemühungen um diese Arbeit verpflichtet. Ebenso gebührt mein herzlicher Dank Frau O. Meingard für die stilistischen Korrekturen des Manuskriptes. Die Monographie wurde in den Jahren 1938—1939 während meines Aufenthaltes im Pflanzenphysiologischen Institut der Tschechischen Karls-Universität geschrieben, weitere Verbesserungen wurden während des Druckes unter Berücksichtigung der mir zur Verfügung stehenden Literatur bis zum Jahre 1943 durchgeführt. Die Arbeit wurde im Jahre 1945 schon gedruckt, kann aber wegen der Nachkriegsschwierigkeiten erst jetzt erscheinen.

Aus Zweckmäßigkeitsgründen erscheint die Monographie in zwei Teilen. Der 1. Teil bringt den gesamten Text mit allen Tabellen und der Farbtafel. Der 2. Teil wird Schriften-, Namen-, Sach-, Familien- und Artenverzeichnis enthalten. Da inzwischen einschlägige neue Arbeiten erschienen sind, wird dem 2. Teil ein kurzer Nachtrag beigefügt, der der neuesten Literatur gewidmet sein wird.

PETR F. MILOVIDOV.

Prag

Anstalt für Pflanzenschutz der Staatlichen Landwirtschaftlichen Forschungsanstalten

April 1949

Berichtigung

Seite	Zeile	steht	es muß heißen
66	21 von oben	Chloräthylalkohol	Chloräthyl- Alkohol-Gemisch
209	4 oben in Tabelle bei Roskin	Karcinomzellen	Karzinomzellen
214	6 oben	Lehmann	Lehman
240	Fußnote Ende	9	*
273	Fußnote	Verlagbarkeit	Verlagerbarkeit
401	1 unten	so dass.	so dass
42 0	Fußnote 4 unten	nukleus	nucleus
447	Seitentitel	A. 7. Neagtive	A. 7. Negative
468	6 oben	(EULGEN & ROSSEN- BECK	(FEULGEN & ROSSEN- BECK
470	11 oben	Chromatinin-	Chromatin-
499	13 oben	8—16	8—17
509	Seitentitel	B. 5.	B. 6.
510	3 unten	Arachnoideen	Arachnoideen und Cephalopoden
513	9 oben	Sublimat	Sublimat und von Säuren
514	5 unten	noch beim	noch im SO ₂ -Wasser, sondern im Leitungs- wasser oder beim
515	2—3 oben	VOIT (1925b, 1927a, MILOV1DOV 1935, IMŠENECKI1936)	VOIT (1925a, 1927a), MILOVIDOV(1935), IMŠENECKI(1936)
515	4 oben	Die Autoren	Die zwei ersten Autoren

Inhalt

	Seite
Vorwort	V
Einleitung: Begriff des Zellkernes. Bedeutung des Kernes und	
der Kernsubstanz im Zelleben	1
Erster Teil	
Physikalische und physikochemische Eigen-	
schaften des Zellkernes	16
Kapitel I	
Räumlichkeit des Zellkernes	16
1. Kernform und ihre Veränderungen	16
2. Kerngröße, ihre Veränderungen. Kernwachstum	20
3. Kernplasmarelation	28
Kapitel II	
Lage und Bewegungen des Zellkernes	31
Kapitel III	
Optische Eigenschaften des Zellkernes	40
1. Allgemeines	40
Lichtbrechungsvermögen der Kernstrukturen Aussehen des Zellkernes im Dunkelfeld	41
4. Aussehen des Zellkernes im polarisierten Licht	45 48
5. Absorption von X-Strahlen	57
6. Absorption der infraroten Strahlen	57
7. Absorption des ultravioletten Lichtes durch die Kern-	
strukturen	59
Kapitel IV	
Spezifisches Gewicht des Zellkernes und	
seiner Bestandteile	63
 Spezifisches Gewicht des Ruhekernes als Ganzes Spezifisches Gewicht einzelner Kernbestandteile 	63 69
a) Kernkörperchen	69
b) Karyotin und Kernsaft	70
c) Chromosomen	71
d) Kernteilungsfiguren als Ganzes	71
e) Kernspindel	73
Kapitel V	
Physikochemische Eigenschaften des Zell-	
kernes (Molekularphysik und Kolloid- chemie)	71
	74
Kohäsionserscheinungen. Aggregatzustand des Zellkernes	
 Konsistenz des Kernes im ganzen. Viskosität. Plastizität und Elastizität. Sol-Gel-Zustand. Verschmelzung der 	
Kerne und seiner Teile	74

X Inhalt

2.	Kolloider Bau des Zellkernes	94
	a) Kolloiddisperse Phasen des Ruhekernes b) Grobdisperse Phasen des intakten Zellkernes	94 96
3.	Konsistenz und andere physikochemische Eigenschaften	,,,
	einzelner Kernbestandteile im Ruhekern und während der	104
	Teilung a) Kernmembran	104 105
	b) Kernretikulum	112
	c) Chromosomen d) Nukleolus	112 137
	e) Achromatische Spindel	139
4.	Veränderungen der Konsistenz und der Kolloidstruktur des Zellkernes unter verschiedenen Einflüssem. Entmischung und Koagulation. Koazervate. Thixotropie. Sol-Gel-Um-	
	wandlung	151
	a) Unbeständigkeit der Kernstrukturb) Einwirkung verschiedener Einflüsse auf den Kern-	151
	zustand	153
	Kapitel VI	
	sikochemische Eigenschaften des Zell-	
	rnes	174
1.	Adhäsions- und Adsorptionserscheinungen. Vitalfärbung des Zellkernes	174
2.	Kinetik disperser Systeme. Wasserverhältnisse und osmo-	
1740	tische Eigenschaften des Zellkernes	201
3.	Stoffwechsel im Zellkerne und Kern-Plasma-Austausch a) Eintritt flüssiger Substanzen in den Zellkern, ihre An- häufung und ihr Nachweis. Metaplasmatische Kernein-	227
	schlüsse	227
	b) Chromatinsynthese im Zellkern	233
	Zytoplasma. Chromidienlehre	242
4.	Wasserstoffionenkonzentration des Zellkernes und seiner Bestamdteile	263
	Kapitel VII	
Elek	trische Eigenschaften des Zellkernes	270
	Elektrische Ladung des Kernes im Ruhestadium und	
	während der Teilung. Elektrophorese	270
2.	Isoelektrischer Punkt des Zellkernes	275
	Kapitel VIII	000
	ikochemie der mitotischen Teilung	279
	Allgemeine Veränderungen des Protoplasmas während der Teilung	279
	Chemische und enengetische Vorgänge während der Teilung	305

Inhalt	XI
2 M 1 0 1 M 2 7 7 1 M 1 0 1 1 W	Seite
3. Mechanik der Mitose. Theorien der Mechanik der mito- tischen Teilung	309
A. Physikalische Theorien	309
a) Rein mechanische Erklärungen. Rolle der Spindel	309
b) Magnetische Theorien	316
c) Elektrische Theorien	320
B. Physikochemische Theorien der Mitose	323
d) Hydrodynamische Hypothesen	323
e) Autonome Chromosomenbewegung	331
f) Mechanismus der Bewegung des Nukleolus	333
g) Größe der bei der Teilung wirkenden Kräfte	334
Zweiter Teil	
Chemische Eigenschaften des Zellkernes	339
A. Makrochemie des Zellkernes Kapitel IX	339
Organische Kernstoffe	339
1. Analyse der isolierten Kernstoffe	339
2. Nukleoproteide und Nukleine	342
3. Nukleinsäuren	349
4. Lipide und Fette	355
B. Mikrochemie des Zellkernes Kapitel X	356
Anorganische Kernsubstanzen und ihre ört-	
liche Verteilung	356
Kapitel XI	
Chemische Zusammensetzung der Kernstruk-	260
turen (Organische Stoffe)	369
1. Untersuchungsmethoden der chemischen Natur der Kern-	260
elemente 2. Wert der Färbungsmethoden für die chemische Diffe-	369
renzierung der Kernstrukturen. Färbungstheorien	372
3. Mikrochemische Reaktionen einzelner Kernteile	380
a) Kernmembran	381
b) Kernsaft	381
c) Mikrochemische Eigenschaften des Karyotins und der	
Chromosomen	382
d) Achromatische Komponenten des Kernretikulums	396
e) Nukleolus	399
f) Achromatische Spindel	418

		V . U I VII	Seite
_		Kapitel XII	220
D	1 e	Nuklealreaktion	419
		A. Allgemeiner Teil	
T	h e	oretische Begründung und Technik der	
	N	uklealreaktion	419
	1.	Grundlagen der Nuklealreaktion	419
	2.	Nuklealfärbung	420
	3.		423
		a) Wirkung der Fixierung	423
		b) Einfluß der Hydrolyse	427
	4	Reaktion mit fuchsinschwefliger Säure	432
	1,	a) Das Reagens	432
		b) Optimale Färbungsdauer in fuchsinschwefliger Säure	434
		c) Autohydrolyse	436
		d) Haltbarkeit der Nuklealfärbung	436
	5.	Technik der Nuklealfärbung	437
	6.	Fehlerquellen bei der Nuklealfärbung	440
	7.	Negative Nuklealreaktion	441
	8.	Auswertung der Nuklealreaktion als Methode	448
		B. Spezieller Teil	
A:		lyse der Zellkerne mit Hilfe der Nukleal- aktion	454
		Chromatinbegriff	454
	2.	Anwendung der Nuklealreaktion auf die Untersuchung der	460
		Oo- und Spermiogenese	
		a) Oogenese b) Spermiogenese	460 465
	3.	Thymonukleinsäure bei Akaryonten	467
	4.	Thymonukleinsäure in pflanzlichen und tierischen Kernen	101
	4.	(Karyonten)	474
		a) Protozoa	475
		b) Metazoa	479
		c) Kerne der niederen Pflanzen	480
		d) Kerne der Gefäßpflanzen	483
	5.	Verteilung der Nuklealstoffe in den Kernstrukturen	485
		a) Kernmembran	485
		b) Kernsaft	486
		b) Kernsaft	486 490
		b) Kernsaft	486

		Inhalt	XIII
50	6.	Mit fuchsinschwefliger Säure reagierende extranukleare Gebilde	
		a) Blepharoplasten und Parabasalapparate	. 508
		b) Tigroidsubstanz der Nervenzellen	511
		c) Metachromatin	. 512
		d) Aldehydähnliche Körper	. 513
	7.	Nuklealreaktion und Chromidienlehre	518
	8.	Anwendung der Nuklealreaktion in der experimenteller Zytologie	
	9,	Anwendung der Nuklealreaktion in der Pathologie	525
	Tafel	erklärund	

Einleitung

Begriff des Zellkernes. Bedeutung des Kernes und der Kernsubstanz im Zelleben

Das Zellgebilde, das später Zellkern, Nukleus genannt wurde, ist zuerst im XVII. Jahrhundert von dem holländischen Gelehrten A VAN LEEUWENHOEK (nach SCHLATER 1899, S. 671) beobachtet später von Fontana (1781), Meyen (1827, 1828), Brisseau-MIRBEL (nach Guilliermond & Mangenot & Plantefol) gesehen und abgebildet und 1831 bei einer Reihe von Pflanzen als ein allgemein verbreitetes Gebilde unter dem Namen "areola" und "nucleus" von R. Brown von neuem entdeckt und beschrieben worden. Schleiden (1838), der den Kern als "Cytoblast" bezeichnete, hat ihn in Zusammenhang mit der Zellteilung gebracht. Mit der Zeit erwies es sich, daß der Zellkern ein ganz wesentlicher Zellbestandteil ist. Für seine allgemeine Bedeutung spricht vor allem das Vorhandensein eines typischen Zellkernes in allen normal und dauernd funktionierenden Zellen aller Lebewesen (Cyanophyceen und Bakterien ausgenommen)1) und die grundsätzliche Ähnlichkeit der Struktur des ruhenden und des sich teilenden Zellkernes in den verschiedensten Klassen der Tiere und Pflanzen

Obwohl schon vorher zahlreiche Definitionen des Kernes gegeben wurden, können uns diese jetzt nicht mehr befriedigen, da sie den Zellkern meistens nur einseitig und unvollständig charakterisierten. Nach O. Hertwig (1923) kann man den Zellkern "... als eine vom Protoplasma unterschiedene Masse eigentümlicher Kernsubstanzen, welche in sehr verschiedenartigen Formzuständen sowohl im ruhenden, als auch im aktiven Zustand bei der Teilung auftreten" definieren. Bělař's (1926) Definition des Zellkernes: "Kern ist jedes vom Zytoplasma abgegrenzte Ge-

¹) Němec stellt diese zwei Gruppen von Lebewesen unter dem Namen Akaryonta allen übrigen (Karyonta) gegenüber.

bilde in dem bei seiner Teilung Chromosomen auftreten, bzw. welches sich durch Umwandlung von Chromosomen gebildet hat". läßt die physikochemischen Eigenschaften des Zellkernes überhaupt beiseite. Seine spätere Formulierung (1928, S. 7) ist die folgende: Als Zellkern (oder Kern schlechtweg) bezeichnet man einen gegen das Zytoplasma scharf abgegrenzten Protoplasmabereich, der sich in verschiedenen chemischen und physikalischen Eigenschaften vom Zytoplasma unterscheidet und nur aus seinesgleichen durch Teilung oder Verschmelzung entsteht. Diese Formulierung ist jedoch aus zwei Gründen vorläufig als unzulänglich zu bezeichnen: erstens weil wir keine einzige charakteristische chemische oder physikalische Eigenschaft kennen, die allen Kernen zukommt1), zweitens (und vor allem) aber, weil auch andere protoplasmatische Gebilde, die consensu omnium nicht als Kerne angesehen werden (z. B. die Pyrenoide oder sog. Zentralkörner der Heliozoen), mit manchen Kernen in der einen oder anderen Eigenschaft übereinstimmen

Nur eine Eigenschaft kommt fast allen teilungsfähigen Kernen zu: die Ausbildung von Chromosomen bei der Teilung. Für diejenigen Kerne, die diese Eigenschaft nicht besitzen, läßt sich fast ausnahmlos nachweisen, daß sie durch Umbildung eines "Chromosomenkernes" entstanden sind".

Darlington (1932) definiert den Zellkern als einen Zellkörper, der durch Mitose entsteht und sich vermehrt. Küster (1935, S. 117) gibt in kurzer Form eine Beschreibung der Haupteigenschaften des Zellkernes. Soweit mir bekannt, wurde bis jetzt eine genaue und vollwertige Definition des Zellkernes nie gegeben. Eine solche Definition ist auch nicht leicht und kann augenscheinlich von verschiedenen (morphologischen, chemischen, physiologischen) Standpunkten aus versucht werden, die aber nicht immer ganz voneinander abgegrenzt werden können. Wir wollen den Versuch machen, eine solche Definition zu geben:

Der Zellkern ist ein Zellbestandteil, der mit einer eigenen Membran abgegrenzt ist und aus einem gewöhnlich flüssigen Kernsaft, einem dickflüssigen Nukleolus und einem dickflüssigen oder zähen, unbedingt Thymonukleinsäure enthaltenden Karyotin besteht, ein Zell-

¹) Jetzt kennen wir eben diese chemische, sehr charakteristische Substanz, welche allen Zellkernen zukommt: die Thymonukleinsäure.