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Preface

Modern mathematics has over 300 years of history. From the very beginning,
it was focused on differential equations as a major tool for mathematical mod-
elling. Most of mathematical models in physics, engineering sciences, biomath-
ematics, etc. lead to nonlinear differential equations.

Today’s engineering and science students and researchers routinely confront
problems in mathematical modelling involving solution techniques for differen-
tial equations. Sometimes these solutions can be obtained analytically by nu-
merous traditional ad hoc methods appropriate for integrating particular types
of equations. More often, however, the solutions cannot be obtained by these
methods, in spite of the fact that, e.g. over 400 types of integrable second-order
ordinary differential equations were accumulated due to ad hoc approaches and
summarized in voluminous catalogues.

On the other hand, the fundamental natural laws and technological prob-
lems formulated in terms of differential equations can be successfully treated
and solved by Lie group methods. For example, Lie group analysis reduces
the classical 400 types of equations to 4 types only! Development of group
analysis furnished ample evidence that the theory provides a universal tool for
tackling considerable numbers of differential equations even when other means
of integration fail. In fact, group analysis is the only universal and effective
method for solving nonlinear differential equations analytically. The old inte-
gration methods rely essentially on linearity as well as on constant coefficients.
Group analysis deals equally easily with linear and nonlinear equations, as well
as with constant and variable coefficients. For example, from the traditional
point, of view, the linear equation

dny dn—ly

dy
dzn T g to a1 g tany =0

with constant coefficients a,...,a, is different from the equation

n=

= Y ~n—1 dn—lg
" —+a1z
an azn—1
known as Euler’s equation. From the group standpoint, however, these equa-
tions are merely two different representations of one and the same equation
with two known commuting symmetries, namely,

i
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for the first and second equation, respectively. These symmetries span two
similar Lie algebras and readily lead to the transformation z = In |Z| converting
Euler’s equation to the equation with constant coefficients.

I believe that Lie groups are interesting first of all due to their utilization
for solving differential equations. It was a mistake to isolate them from this
natural application and treat as a branch of abstract mathematics. “To isolate
mathematics from the practical demands of the sciences is to invite the sterility
of a cow shut away from the bulls” (P.L. Chebyshev, 1821~1894).

Today group analysis is becoming part of curricula in differential equations
and nonlinear mathematical modelling and attracts more and more students.
For example, the course in Partial Differential Equations at Moscow Institute
of Physics and Technology attracted more than 100 students when I used Lie
group methods, instead of 10 students that we had in the traditional course.
The same happened when I delivered similar lectures for science students in
South Africa and Sweden.

The present text is based on these lectures and reflects, to a certain extent,
my own taste and experience. Primarily, it has been designed for the course
in differential equations delivered at the Blekinge Institute of Technology for
engineering, mathematics and science students. Then the text has been revised,
enlarged and is used now in the following courses:

Differential equations: The course covers both ordinary and partial dif-
ferential equations; it combines basic classical methods, mainly for linear equa-
tions, with new methods for solving nonlinear equations analytically; designed
for beginners; students learn how to find symmetries of differential equations
by solving determining equations.

Analytical methods in mathematical modelling: The emphasis in
this course is on nonlinear mathematical models in physics, biology and en-
gineering sciences; the course covers such topics as nonlinear superposition,
symmetry and conservation laws, group invariant solutions.

Group analysis of differential equations: The course introduces stu-
dents of mathematics and engineering to those areas of the theory of transfor-
mations groups and Lie algebras which are most important in practical appli-
cations; during the course, students develop analytic skills in modern methods
for solving nonlinear ordinary and partial differential equations.

Distributions and invariance principle in initial value problems:
An easy to follow introduction to basic concepts of the distribution theory with
emphasis on useful tools; Lie’s infinitesimal technique is extended to the space
of distributions and used, together with an invariance principle, for calculating
fundamental solutions and solving initial value problems for equations with
constant and variable coefficients.

In my presentation, I have striven to make the group analysis of differential
equations more accessible for engineering and science students. Therefore, the
emphasis in this book is on applications of known symmetries rather than on
their computation. In order to formulate the essence of my experience in solving
various types of differential equations, I rephrase the famous French aphorism
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cherchez la femme as follows:
If you cannot solve a nonlinear differential equation, cherchez le groupe.

My sincere thanks are due to my colleague Claes Jogréus for his lasting help.
My wife Raisa read the manuscript at various stages of completion of the second
edition, corrected misprints and contributed numerous valuable criticisms, for
which I make grateful acknowledgement. It is also a pleasure to thank my
daughters Sania and Alia for several helpful comments.

Karlskrona, 3 March 2009 Nail H. Ibragimov
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Chapter 1

Selected topics from analysis

This preparatory chapter is designed to meet the needs of beginners and pro-
vides a background in elementary mathematics and mathematical analysis
which is necessary in the succeeding parts of the book.

Additional reading: E. Goursat [10].

1.1 Elementary mathematics

1.1.1 Numbers, variables and elementary functions

Real numbers appear in our practical activities (e.g., while measuring distances,
weights, etc.) as approximate decimal numbers. For example, the distance to
the moon at perigee is S km, where the number S is approximately equal to
356630. A more accurate estimation of the distance is 356629 km and 744 m.
Hence,
744 7 4 4
S =~ 356629.744 = 356629 + —— = 35662 —t — 4 —-
3 629+ 100 = 2999 15 700 * To00

If one will continue further, one will get even better approximations and obtain
a representation of the number S as an infinite decimal. Thus, we use the
following definition.

Definition 1.1.1. Real numbers are identified with infinite decimals
a=ap.aiaz...dy..., (1.1.1)

where ag is an integer, and a1, as, ...,y ... are digits, i.e., they can assume
any of ten Arabic number symbols, 0 through 9. Eq. (1.1.1) means that

a as an
= 22 = e 1.1.
a a0+10+100+ +10n+ (1.1.2)
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Remark 1.1.1. If (1.1.1) is a periodical decimal, and only in this case, a is
a rational number, i.e., a = p/q, where p and g are integers, g # 0. The real
numbers determined by non-periodical infinite decimals are termed irrational
numbers. The numbers 0. (9)= 0. 9999... and 1 are identified.

Example 1.1.1. Famous examples of irrational numbers are:

V2 = 1.4142136. .. ~ 1.41
7= 3.1415926535 . . . ~3.14
e = 2.718281828459045 ... ~ 2.72

1 1
4= lim (1+§+~--+E—lnn)z0.58

n—o

where v is known as Fuler’s number.

Remark 1.1.2. It is a historical accident that we represent real numbers in
the decimal system. If Babylonian culture would last much longer we would
probably use the Babylonian sexagesimal system and employ, instead of (1.1.2),
the representation

a O

a=ao+@+w+"'+@'+"'- (1.1.3)

Definition 1.1.2. A wariable z is a quantity to which any numerical value can

be assigned. A quantity with a fixed value is called a constant. One should

distinguish arbitrary constants from absolute constants. An arbitrary constant

retains any given value throughout the investigation, while an absolute constant
retains the same value in all problems.

Example 1.1.2. In the equation of a circle, 2442 = R?, z and y are variables
representing the coordinates of a point moving along the circle, while the radius
R is an arbitrary constant. On the other hand, the formula C = 2nR for the
circumference of the circle contains, along with the arbitrary constant R, two
absolute constants, 2 and & ~ 3.14.

Theorem 1.1.1. Any real number ¢ is a limit of a sequence of rational num-
bers 7, = pn/qn, where p, and g, # 0 are integers:

a= lim ry,. (1.1.4)

n—o0

Proof. Let the real number a be given by Eq. (1.1.1). We take for r,, the
finite sums of the corresponding infinite series (1.1.2):

a1l az an
G Th=a+ =+ "4+ +

a1 ay ag
AR TR TR 10 © 100 10n

10 10 100" °°
They provide a sequence of rational numbers {r,} satisfying Eq. (1.1.4).

The following definition is based on Theorem 1.1.1.
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Definition 1.1.3. The exponential function y = a*, where a > 0 is any real
number, is defined by the following equations:

a®=1,a'=a,a"=a---a, n=23,..., (here z = n);
——
n
1 3
an = Ya=be " =a; a7 = Va?, (here = = p/q);
a® = lim a® = lim Wa?~», (herez= lim Zn, Zn =Dn/gn)-
n—oo n—o n—o0

Basic laws of exponents:

1
a ¥ = pry a®a¥ =a*t¥, (ab)® =a"b%, (a®)¥ =a"Y.

Example 1.1.3. Consider the number 10V2 = 25.954.... We have v2 =
lim z,, where zg = 1, 1 = 1.4, zo = 1.41,.... Accordingly, 10V2 = lim Yns

n—00

where yo = 10%0 = 10, y; = 10 = 25.12, y = 10%2 ~ 25.70,. ...

In solving differential equations, one often encounters the exponential func-
tion
y=¢e". (1.1.5)
Here e is a real number determined by one of the most important limits in
mathematical analysis:

e= lim (1+%)". (1.1.6)

ki mde ol

Its value, accurate to fifteen decimal places, is given in Example 1.1.1.
Function (1.1.5) is a representative of so-called elementary functions defined
as follows.

Definition 1.1.4. The basic elementary functions are:

y=C, C( =const.,
y=2z% where z >0, « is a real number;
y=a®, wherea>0, a#1l;
y=log,z, wherea>0,a#1;, z>0;
y=sinz, y=cosz, y =tgz (=tanz), y = ctgz;
y = arcsinz, y = arccosz, y = arctgz, y = arcctgr.
A function y = f(z) is called an elementary function if it is obtained from the

basic elementary functions by a finite number of operations involving addition,
subtraction, multiplication, division, and superposition.

Remark 1.1.3. The logarithm log, z with a = e is called the natural logarithm
and denoted by Inz.
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Remark 1.1.4. The basic trigonometric functions can be obtained from one
of them, e.g., from sin z, in combination with other basic elementary functions.
Indeed,

— sinz V1 —sin*z
cosz = V1—sin“z, tan:c:———2—, cotr = ——-
Vv1—sin“z sz

Similar relations exist between inverse trigonometric functions as well, e.g.

arcsinz = arctan (1.1.7)

z
v1-x?
Example 1.1.4. The following hyperbolic functions provide examples of non-
basic elementary functions:

. et —e T et +e* ef —e™ 7
simhr=———, coshz=———, tanhz=——" (1.1.8)
2 2 et + e 7
Elementary functions of many variables are obtained in a similar way.

Example 1.1.5. The following function (¢, z, z) is an elementary function of
three variables, t,x, 2 :

1 1
P = —ZIH‘M + ?<2sin2m + e Fsinx + lge‘k)

(1.1.9)

involving three arbitrary constants, l1, lo and M.

Example 1.1.6. The following functions that often occur in applications are
given by integrals and are not elementary:

Si(z) :/ SlTntdt (the integral sine), (1.1.10)

0
(e o

Ci(z) = —/ Eotitdt (the integral cosine), (1.1.11)
2

erf(m)z——/ e “ dt (the error function), (1.1.12)
v Jo

E'()——/I ¢ gt 11()—/$i=Ei(1nx) (1.1.13)

i(z) = T x_glnt_ , 1.
o

F(m):/ e tt*"!dt (the Gamma function). (1.1.14)
0

The Gamma function plays an important part in analysis and differential
equations. It has interesting general properties, e.g.

I'z+1) =zl (z), T{z)(l-z)=

el (1.1.15)

and the remarkable numerical values (see, e.g. [34]):

P(1)=1, T (%) = v, 7(3) = 2’;"/2, Pn+l)=nl,  (L116)

k3

where w,, is the surface area of the unit sphere in n dimensions.
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1.1.2 Quadratic and cubic equations

Problems of elementary mathematics can often be solved by the method of
transformations. Let us begin with elementary algebra.
Recall that the roots £ = z, and z = z, of the general quadratic equation

ar? +bzx+c=0, a#0, (1.1.17)
are given by
— 2 _
g, , = DT Vb —dac (1.1.18)
' 2a
The expression
A =b? - 4ac (1.1.19)

is known as the discriminant of the quadratic equation (1.1.17). It is manifest
from (1.1.18) that the vanishing of discriminant (1.1.19),

A =b%—4ac=0, (1.1.20)

is the condition for Eq. (1.1.17) to have two equal roots, =, = z,.

In accordance with tradition, students learn from school to derive solution
(1.1.18) by completing the square. Indeed, this method is simple but it is not
suitable for tackling the general cubic as well as equations of higher degrees.

The idea of transformation of equations, unlike the method of completing
the square appropriate only for the quadratic equation, furnishes a general
method appropriate for solution of the quadratic equation as well as for a
simplification of equations of higher degrees. The simplest transformation of
equations is provided by a linear transformation of the variable z :

y=z+e. (1.1.21)

It converts any equation of degree n into an equation of the same degree. In
particular, the quadratic equation (1.1.17) after the substitution x = y — ¢
becomes ay? + (b — 2ae)y + ae? — be + ¢ = 0. Hence, transformation (1.1.21)
converts (1.1.17) into a new quadratic equation,

ay’+by+c=0,
where B
G=a, b=b—2ae, ¢=c+ae?—be (1.1.22)
Defining € from b — 2ae = 0, one obtains b = 0 and € = ¢ — b*/(4a). Hence, the
transformation

b
y=o+ 5 (1.1.23)

converts (1.1.17) into the equation



