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PREFACE

Volume 5 of “Methods in Microbiology” is concerned with the microbial
cell—methods of observing it, of studying its properties and behaviour,
of analysing it chemically and immunclogically, and of purifying and
characterizing its various “organelles” and macro-molecular components.
Wherever possible, the emphasis has been placed on quantitative methods.

We have tried to cover relatively new techniques such as reflectance
spectrophotometry, isoelectric focusing and polyacrylamide gel electro-
phoresis which .appear to us to have considerable future potential in

“microbiology in addition to more generally used techniques such as those
for cell disintegration and hybridization of nucleic acids which are not
fully described in a concise form elsewhere. .

As with earlier Volumes in the Series we have left the treatment of the
different topics largely to the individual authors, restricting our editorial
activity to easuring consistency.and avoiding overlaps and gaps between the
contributions.

As contributions accumulated it became obvious that there was too
much material for a single Volume and the content was divided. Volume 5A
contains Chapters concerned with the direct observation or study of whole
cells or organelles while Volume 5B'is concerned with the disintegration
of cells, their chemical analysis and the techniques used to separate and
characterize their components.

Our thanks are due to the pleasant way in which our authors have co-
operated with us and particularly.to those who agrced to update their
contributions when delay in the publication process made it necessary.

J. R. Nonris
, D. W. RmBONS
April, 1971 :
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CHAPTERI

Microscopy and Micrometry

Lours B. QuUESNEL

Department of Bacteriology and Virology, University of Manchester,

Manchester, England
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I. INTRODUCTION

The microscope is an cssential tool for the microbiologist; without it
he is working in the dark. Modern research microscopes are precision
instruments designed with great skill and dedication, yet they are used by
many in an indifferent, almost haphazard, way. It is impossible in the
space of a single Chapter either to study the microscope historically or to
study the scientific theory which lies behind its design, but only to provide
the basic knowledge required for the intefligent and accomplished use of
the instrument as a tool of microbiological investigation. Basic theory will
be discussed only in so far as it is required for the realization of the full
design potential of the modern microscope.

The main features of a modern microscope are illustrated in Fig. 1.

II. LIGHT AND ITS BEHAVIOUR

The visible spectrum used in light microscopy forms a very small
portion of a much larger spectrum of electromagnetic radiations. This
restricted spectrum is of particular use in microscopy because the biological
sensitivity of the eye to radiations in this range enables us to use the
brain as the “recording” or ‘‘display” stage of the process, albeit a
temporary record. This does not mean that other sections of the electro-
magnetic spectrum cannot be used for microscopy—they can—but when
invisible radiations are used in the image-forming process a display which
“generates’”’ wavelengths in the visible range must be used, e.g. photo-
graphic emulsions in U.V. microscopy, fluorescent screens in electron
microscopy. The relationship between the visible spectrum and the electro-
magnetic spectrum (E.M.) is shown in Fig. 2. While the E.M. spectrum
includes wavelengths of radiations from about 3000 metres to less than
10712 centimetres visible light fills the very small range from about
7% 10~3 cm down to 4 x 10-3 cm, or, in the units usually used to define
wavelengths, from 7000 Angstrom units (A) to 4000 which is equivalent to
700 nanometers (nm) to 400 nm (1A = 108 cm; 1 am = 1077 cm).
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Fic. 1. A modern microscope with inclined oculars and built-in lamp—-the
Zeiss (Oberkochen) Standard RA Routine and Research Microscope. (Figure by
courtesy of Carl Zeiss, Oberkochen, W. Germany.)
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1. MICROSCOPY AND MICROMETRY 5

Each wavelength of the electromagnetic spectrum can be associated with
a wave number—the reciprocal of the wavelength in cm; and since they are
all propagated with the same velocity each will have a different frequency, v.
Each wavelength is also associated with a specific energy E, where E = hv
is the energy in ergs of a quantum of frequency, v, where 4, is Planck’s
constant; or the energy value may be expressed as V, the energy in electron
volts. In general terms we can say that the shorter the wavelength the
higher the energy content and the more penetrating (and dangerous) the
radiation; while the longer the wavelength the lower the energy and the
less penetrating the radiation. Thus we find a progressive increase of
energy from ultraviolet through X- and y-rays to cosmic rays the most
penetrating of all. S :

A. Theories of light

The earliest theories of light were attempts to explain the phenomenon
of vision rather than the nature of light itself. As early as 500 B.c. Greek
thinkers had put forward the “tactile” and “‘emission” theories; the former
postulated that the eye sent out invisible sensors or sensitive probes which
were able to “feel” objects too distant to be touched physically, while the
latter postulated that the object itself emitted something which entered the
eye and affected some sensitive part of the eye which was responsible for
sight. For reasons obvious to us now, the “emission” theory eventually
completely displaced the “tactile” theory, and by giving the emission the
term “visible radiation” we can provide a reasonable explanation of the
visual process as follows. : - :

Visible radiation emitted (e.g. on heating), reflected or scattered by a
body, on entering the eye, is focused by the eye lens onto the retinal
surface which contains special sensitive cells connected by nerves to the
brain. When light falls on these a chemical and physical reaction takes
place involving the transformation of the pigment visual purple and result-
ing in the emission of electrical impulses to the centre of the brain where
the visual image is “recomposed” and results in the sensation of sight.
The physiology of vision will not be discussed here.

Quite apart from any physiological consideration it is possible to show
experimentally that visible radiation is associated with the transfer of
energy and any theory of light must accommodate the energy phenomena
associated with it. By analogy with other known methods for the propaga-
tion of energy we could propose that light conveys energy in the form of
“waves” (as the sea transports energy through its wave motion), or the
energy may beconveyed as discrete quantities associated with the movement
of particles (as moving billiard balls, for example, possess kinetic energy).
It should be noted that the transfer of energy in waves need not involve
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the physical translocation of the medium through which tne wave passes,
either of water, or, in the case of light, of air. 'These considerations led to
two basic theories of the nature of light: the “wave” theory and the
‘““corpuscular’’ theory.

From the 17th century it has been known that the propagation of light
could be represented by rays and simple experiment showed thatthose
rays travelled in straight lines translating energy along a path from source
to receptor. From the study of the interference phenomena associated with
“Newton’s Rings”’, Newton recognized that there was some sort of period-
icity associated with light which was evidence for a wave theory; on the
other hand, he could not reconcile this with the rectilinear propagation of
light and, incorporating the concepts of his laws of motion, preferred to
explain light as a procession of corpuscles which either possessed an
internal vibration of their own or were in some sense controlled by waves
or vibrations of the medium through which the light travelled. This
objection to a simple wave theory was removed when it was discovered that
light is not propagated in a strictly linear fashion, and that the rays of a
beam of light which impinged on the edge of an object were bent away
from the direction of propagation—the phenomenon known as diffraction.

As a result of many experiments on interference and diffraction a set
of determinations of the wavelength of light were made and it was shown
conclusively that different wavelengths were always associated with differ-
ent spectral colours. The wavelengths of the different spectral colours are
shown in Fig. 2. : :

While the simple wave theory could be used to describe the behaviour
of light under many circumstances there were many inadequacies of the
theory which were resolved when Maxwell formulated the -equations of
electromagnetism and showed how these could be used to describe the
behaviour of light. An essential feature of the theory was the propagation
of transverse electromagnetic waves (a vector quantity) as distinct from the
simple theory of longitudinal waves in which the direction of vibration is
always the same as the direction of propagation, so that longitudinal wave
motion could be represented as variations of a scalar quantlty

The work of Maxwell soon led to the enormous expansion of the spec-
trum and the realization that “light waves” were only a tiny section of a
very much larger spectrum of electromagnetic radiation associated with
wavelengths from over 3000 m to less than 10-13 m,

Even Maxwell’s electromagnetic explanation of the nature of light was
inadequate to explain certain phenomena such as the energy transferred to
the electron of an atom which had been excited by radiation with subse-
quent ejection of the electron (ionization). The failure resulted from the
implication that the energy of electromagnetic radiation was continuously
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distributed. This difficulty was surmounted by Einstein’s explanation that
the energy of the radiation was concentrated into separate discrete packets,
each packet being called a photon, and that for any particular wavelength
all the photons had the same energy value. Coupled with Plank’s realization
that the energy is emitted in' multiples of a single unit, with no fractions
of a unit being possible, the unit of energy was called the quantum and the
relationships between the energy level of a radiation and the wavelength
were given by—

E = he/]A

Where 4 is Plank’s constant (66 x 10-34 joule sec), ¢ is the velocity of
light and A the wavelength. ' '
If v is the frequency then,

¢ = VA
and
E=h

The modern theory of light is a composite theory which incorporates
both the electromagnetic (wave) theory (which has no place for photons)
and the photon (particle or corpuscle) theory which has no place for the
waves. The former: describes adequately the phenomena of interference,
diffraction and polarization while the latter is required for an explanation
of the observed interactions of radiation and matter.

Modern quantum mechanics constitutes a single theory incorporating
the appropriate parts of the electromagnetic wave theory, the quantum
theory and the theory of relativity in a composite explanation -of the
properties of light and matter. .

For an elementary understanding of the behaviour of light in relation to
microscopy we can disregard the quantum theory. The quantum aspects
are of importance, however, in understanding the phenomenon of fluores-
cence which lies at the heart of the. fluorescence microscopy. techniques
which are now.used to such great effect. Fluorescence microscopy is dealt
with elsewhere in this Volume (Walker et al., this Volume, page 219).

B. Light waves

For our present purposes we may depict light as consisting of waves
such as that represented by the sine cutve shown in Fig. 3.

This form of simple harmonic motion is describable by the trigonometric
functibn— ‘ : »

y = Acos2m (:— ;,)



