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Foreword

During July 23th to 27th, 2012, the first session of the Barcelona Summer School
on Stochastic Analysis was organized at the Centre de Recerca Matematica (CRM)
in Bellaterra, Barcelona (Spain). This volume contains the lecture notes of the two
courses given at the school by Vlad Bally and Rama Cont.

The notes of the course by Vlad Bally are co-authored with her collabora-
tor Lucia Caramellino. They develop integration by parts formulas in an abstract
setting, extending Malliavin’s work on abstract Wiener spaces, and thereby being
applicable to prove absolute continuity for a broad class of random vectors. Prop-
erties like regularity of the density, estimates of the tails, and approximation of
densities in the total variation norm are considered. The last part of the notes is
devoted to introducing a method to prove existence of density based on interpola-
tion spaces. Examples either not covered by Malliavin’s approach or requiring less
regularity are in the scope of its applications.

Rama Cont’s notes are on Functional It6 Calculus. This is a non-anticipative
functional calculus extending the classical It6 calculus to path-dependent func-
tionals of stochastic processes. In contrast to Malliavin Calculus, which leads to
anticipative representation of functionals, with Functional It6 Calculus one ob-
tains non-anticipative representations, which may be more natural in many ap-
plied problems. That calculus is first introduced using a pathwise approach (that
is, without probabilities) based on a notion of directional derivative. Later, after
the introduction of a probability on the space of paths, a weak functional calculus
emerges that can be applied without regularity conditions on the functionals. Two
applications are studied in depth; the representation of martingales formulas, and
then a new class of path-dependent partial differential equations termed functional
Kolmogorov equations.

We are deeply indebted to the authors for their valuable contributions. Warm
thanks are due to the Centre de Recerca Matematica, for its invaluable support
in the organization of the School, and to our colleagues, members of the Organiz-
ing Committee, Xavier Bardina and Marta Sanz-Solé. We extend our thanks to
the following institutions: AGAUR (Generalitat de Catalunya) and Ministerio de
Economia y Competitividad, for the financial support provided with the grants
SGR 2009-01360, MTM 2009-08869 and MTM 2009-07203.

Frederic Utzet and Josep Vives
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Part 1

Integration by Parts Formulas,
Malliavin Calculus, and
Regularity of Probability Laws

Vlad Bally and Lucia Caramellino






Preface

The lectures we present here turn around the following integration by parts for-
mula. On a probability space (€2, F,P) we consider a random variable G, and a
random vector F' = (FYy,...,Fy;) taking values in R?. Moreover, we consider a
multiindex a = (a1,...,am) € {1,...,d}™ and we write 9, = Ogoy -+ Ogam . We
look for a random variable, which we denote by H,(F;G) € LP(R2), such that the
following integration by parts formula holds:

[BP o p(F, G) E(9.f(F)G) = E(f(F)Ha(F;G)), Yf € C*(RY),

where C°(R?) denotes the set of infinitely differentiable functions f: R? — R
having bounded derivatives of any order. This is a set of test functions, that can be
replaced by other test functions, such as the set C2°(R?) of infinitely differentiable
functions f: R? — R with compact support.

The interest in this formula comes from the Malliavin calculus; this is an
infinite-dimensional differential calculus associated to functionals on the Wiener
space which permits to construct the weights H,(F'; G) in the above integration
by parts formula. We will treat several problems related to IBP, ,(F,G) that we
list now.

Problem 1

Suppose one is able to produce IBP, ,(F, G), does not matter how. What can we
derive from this? In the classical Malliavin calculus such formulas with G = 1 have
been used in order to:

(1) prove that the law of F is absolutely continuous and, moreover, to study the
regularity of its density;

(2) give integral representation formulas for the density and its derivatives;
(3) obtain estimates for the tails of the density, as well;

(4) obtain similar results for the conditional expectation of G with respect to F,
assuming If IBP, ,(F, G) holds (with a general G).

Our first aim is to derive such properties in the abstract framework that we de-
scribe now.

A first remark is that IBP, ,(F,G) does not involve random variables, but
the law of the random variables: taking conditional expectations in the above
formula we get E(0,f(F)E(G | o(F))) = E(f(F)E(HL(F;G) | o(F)). So, if we
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denote g(z) = E(G | F = x), 0,(9)(z) = E(Hy(F;G) | F = ), and if pup(dz) is
the law of F', then the above formula reads

[ ons@st@)due@) = [ £@6als)@)dr(a).

If up(dz) is replaced by the Lebesgue measure, then this is a standard integration
by parts formula and the theory of Sobolev spaces comes on. But here, we have
the specific point that the reference measure is up, the law of F. We denote
0kr g = 6,(g) and this represents somehow a weak derivative of g. But it does
not verify the chain rule, so it is not a real derivative. Nevertheless, we may
develop a formalism which is close to that of the Sobolev spaces, and express our
results in this formalism. Shigekawa [45] has already introduced a very similar
formalism in his book, and Malliavin introduced the concept of covering vector
fields, which is somehow analogous. The idea of giving an abstract framework
related to integration by parts formulas already appears in the book of Bichteler,
Gravereaux and Jacod [16] concerning the Malliavin calculus for jump processes.

A second ingredient in our approach is to use the Riesz representation for-
mula; this idea comes from the book of Malliavin and Thalmaier [36]. So, if Q4 is
the Poisson kernel on R?, i.e., the solution of AQy = 8y (Jp denoting the Dirac
mass), then a formal computation using IBP, ,(F, 1) gives

d d
pr(z) =E@o(F —)) = 3 _E(9}Qa(F —2)) = 3 E(3:Qu(F — 2)Hi(F, 1)).

This is the so-called Malliavin-Thalmaier representation formula for the density.
One may wonder why do we perform one integration by parts and not two? The
answer is that Qg is singular in zero and then 97Q, is “not integrable” while
0;Qq is “integrable”; so, as we expect, integration by parts permits to regularize
things. As suggested before, the key issue when using @4 is to handle the inte-
grability problems, and this is an important point in our approach. The use of
the above representation allows us to ask less regularity for the random variables .
at hand (this has already been remarked and proved by Shigekawa [45] and by
Malliavin [33]).

All these problems —(1), (2), (3), and (4) mentioned above— are discussed
in Chapter 1. Special attention is given to localized integration by parts formulas
which, roughly speaking, means that we take G to be a smooth version of 1{pc 43.
This turns out to be extremely useful in a number of problems.

Problem 2

How to construct IBP, ,(F,G)? The strategy in Malliavin calculus is roughly
speaking as follows. One defines a differential operator D on a subspace of “regular
objects” which is dense in the Wiener space, and then takes the standard extension
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of this unbounded operator. There are two main approaches: the first one is to
consider the expansion in Wiener chaos of the functionals on the Wiener space.
In this case the multiple stochastic integrals are the “regular objects” on which
D is defined directly. We do not take this point of view here (see Nualart [41]
for a complete theory in this sense). The second one is to consider the cylindrical
functions of the Brownian motion W as “regular objects”, and this is our point of
view. We consider F,, = f(AL,...,A2") with AX = W (k/2")-W((k—1)/2") and
f being a smooth function, and we define DyF = 0 f(AL,...,A2") if (k—1)/2" <
s < k/2™. Then, given a general functional F, we look for a sequence F}, of simple
functionals such that F,, — F in L?(Q), and if DF,, — U in L?([0,1] x ), then
we define Dy F = U,. :

Looking to the “duality formula” for DF,, (which is the central point in Malli-
avin calculus), one can see that the important point is that we know explicitly the
density p of the law of (Al,...,A%") (Gaussian), and this density comes on in
the calculus by means of Inp and of its derivatives only. So we may mimic all the
story for a general finite-dimensional random vector V = (V3,...,V,;,) instead of
A = (AL,...,A2"). This is true in the finite-dimensional case (for simple func-
tionals), but does not go further to general functionals (the infinite-dimensional
calculus). Nevertheless, we will see in a moment that, even without passing to
the limit, integration by parts formulas are useful. This technology has already
been used in the framework of jump type diffusions in [8, 10]. In Chapter 2, and
specifically in Section 2.1, we present this “finite-dimensional abstract Malliavin
calculus” and then we derive the standard infinite-dimensional Malliavin calculus.
Moreover, we use these integration by parts formulas and the general results from
Chapter 1 in order to study the regularity of the law in this concrete situation.
But not only this: we also obtain quantitative estimates concerning the density of
the law as mentioned in the points (1), (2), (3), and (4) from Problem 1.

Problem 3

There are many other applications of the integration by parts formulas in addition
to the regularity of the law. We mention here few ones.

Malliavin calculus permits to obtain results concerning the rate of conver-
gence of approximation schemes (for example the Euler approximation scheme for
diffusion processes) for test functions which are not regular but only measurable
and bounded. And moreover, under more restrictive hypotheses and with a little
bit more effort, to prove the convergence of the density functions; see for exam-
ple [12, 13, 27, 28, 30]. Another direction is the study of the density in short time
(see, e.g., Arous and Leandre [14]), or the strict positivity of the density (see, e.g.,
Bally and Caramellino [3]). We do not treat here these problems, but we give a
result which is central in such problems: in Section 2.4 we provide an estimate of
the distance between the density functions of two random variables in terms of the
weights H, (F,G), which appear in the integration by parts formulas. Moreover we



6 Preface

use this estimates in order to give sufficient conditions allowing one to obtain con-
vergence in the total variation distance for a sequence of random variables which
converge in distribution. The localization techniques developed in Chapter 1 play
a key role here.

Problem 4

We present an alternative approach for the study of the regularity of the law
of F. The starting point is the paper by Fournier and Printems [26]. Coming
back to the approach presented above, we recall that we have defined DyF =
lim,, Dy F,, and then we used DF' in order to construct IBP, ,(F,1). But one may
proceed in an alternative way: since DF,, is easy to define (it is just a finite-
dimensional gradient), one may use elementary integration by parts formulas (in
finite-dimensional spaces) in order to obtain IBP, ,(F,,1). Then passing to the
limit n — oo in IBP4 ,(Fp, 1), one obtains IBP, ,(F, 1). If everything works well,
then we are done —but we are not very far from the Malliavin calculus itself. The
interesting fact is that sometimes this argument still works even if things are “going
bad”, that is, even when H,(F,,1) T co. The idea is the following. We denote by
pr the Fourier transform of F' and by py, the Fourier transform of F,,. If we are
able to prove that [ |pr (§)|2 d§ < oo, then the law of F' is absolutely continuous.
In order to do it we notice that 97e**® = (i¢)™e**® and we use IBP, ,,(Fp, 1) in
order to obtain

=y _ 1 m iEF,\ 1 iEFy
‘pF'"(g) - (Zf)mE(al € ) o (zg)mﬂ‘:(e Hm(Fn7l))

Then, for each m € N,

[PR(E)] < [PF(E) = B, (€) + [P (O] < [EE(IF = Ful) + ([ Hn(F, 1)),
So, if we obtain a good balance between E(|F' — F,,|) | 0 and E(|H,,,(F,,1))| T oo,
we have a chance to prove that [z, |pr (£)|2 d¢ < oo and so to solve our problem.
One unpleasant point in this approach is that it depends strongly on the dimension
d of the space: the above integral is convergent if |pr(€)| < Const [£|”% with o >
d/2, and this may be rather restrictive for large d. In [20], Debussche and Romito
presented an alternative approach which is based on certain relative compactness
criterion in Besov spaces (instead of the Fourier transform criterion), and their
method is much more performing. Here, in Chapter 3 we give a third approach
based on an expansion in Hermite series. We also observe that our approach fits
in the theory of interpolation spaces and this seems to be the natural framework
in which the equilibrium between E(|F — F,|) | 0 and E(|H,,(Fy,1)|) T oo has to
be discussed.

The class of methods presented above goes in a completely different direc-
tion than the Malliavin calculus. One of the reasons is that Malliavin calculus is
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somehow a pathwise calculus —the approximations F,, — F and DF,, — DF are
in some L? spaces and so, passing to a subsequence, one can also achieve almost
sure convergence. This allows one to use it as an efficient instrument for analy-
sis on the Wiener space (the central example is the Clark-Ocone representation
formula). In particular, one has to be sure that nothing blows up. In contrast,
the argument presented above concerns the laws of the random variables at hand
and, as mentioned, it allows to handle the blow-up. In this sense it is more flexible
and permits to deal with problems which are out of reach for Malliavin calculus.
On the other hand, it is clear that if Malliavin calculus may be used (and so real
integration by parts formulas are obtained), then the results are more precise and
deeper: because one does not only obtain the regularity of the law, but also inte-
gral representation formulas, tail estimates, lower bounds for densities and so on.
All this seems out of reach with the asymptotic methods presented above.

Conclusion

The results presented in these notes may be seen as a complement to the classical
theory of Sobolev spaces on R? that are suited to treat problems of regularity
of probability laws. We stress that this is different from Watanabe’s distribution
theory on the Wiener space. Let F': W — R%. The distribution theory of Watan-
abe deals with the infinite-dimensional space W, while the results in these notes
concern pp, the law of F', which lives in R, The Malliavin calculus comes on in
the construction of the weights H, (F,G) in the integration by parts formula (1)
and its estimates. We also stress that the point of view here is somehow different
from the one in the classical theory of Sobolev spaces: there the underling measure
is the Lebesgue measure on R%, whereas here, if F is given, then the basic measure
in the integration by parts formula is ur. This point of view comes from Malliavin
calculus (even if we are in a finite-dimensional framework). Along these lectures,
almost all the time, we fix F. In contrast, the specific achievement of Malliavin
caleulus (and of Watanabe's distribution theory) is to provide a theory in which
one can deal with all the “regular” functionals F' in the same framework.

Vlad Bally, Lucia Caramellino






Chapter 1

Integration by parts formulas and the
Riesz transform

The aim of this chapter is to develop a general theory allowing to study-the
existence and regularity of the density of a probability law starting from integration
by parts type formulas (leading to general Sobolev spaces) and the Riesz transform,
as done in [2]. The starting point is given by the results for densities and conditional
expectations based on the Riesz transform given by Malliavin and Thalmaier [36].
Let us start by speaking in terms of random variables.

Let F and G denote random variables taking values on R% and R, respectively,
and consider the following integration by parts formula: there exist some integrable
random variables H;(F,G) such that for every test function f € C2°(R%)

IBP,(F,G) E(8,f(F)G) = —-E(f(F)H:(F,G)), i=1,...,d.

Malliavin and Thalmaier proved that if IBP;(F,1), 7 =1,...,d, hold and the law
of F' has a continuous density pr, then

ZE(@ Qa(F — z)H;(F, 1)),

where Qg denotes the Poisson kernel on R?, that is, the fundamental solution of
the Laplace operator. Moreover, they also proved that if IBP;(F,G),i=1,...,d,
a similar representation formula holds also for the conditional expectation of G
with respect to F. The interest of Malliavin and Thalmaier in these representa-
tions came from numerical reasons —they allow one to simplify the computation
of densities and conditional expectations using a Monte Carlo method. This is
crucial in order to implement numerical algorithms for solving nonlinear PDE’s or
optimal stopping problems. But there is a difficulty one runs into: the variance of
the estimators produced by such a representation formula is infinite. Roughly
speaking, this comes from the blowing up of the Poisson kernel around zero:
0;Qq4 € L for p < d/(d — 1), so that 9;Qq ¢ L? for every d > 2. Hence, esti-
mates of E(|9;Q4(F — x)|”) are crucial in this framework and this is the central
point of interest here. In [31, 32], Kohatsu-Higa and Yasuda proposed a solution
to this problem using some cut-off arguments. And, in order to find the optimal
cut-off level, they used the estimates of E(|9;Qq(F — x)|”) which are proven in
Theorem 1.4.1.



