RETIEEHRLS

PEARSON

tR—IMHRRIERE 205

Ivar Jacobson, Grady Booch
(%) James Rumbaugh %

%HE UNIFIED SOFTWARE
DEVELOPMENT
PROCESS

OBJECT TECHNOLOGY

The complete guide BO0CH :
to the Unified ;

Process from the : JACOBSON
original designers % RUMBAUGH

- SERIES EDITORS

ATERF Rkt

a
k Education
b
N
e (R

B TREEERAS

& — MR

(REIRO

ot
H

RIERS iRt
w7

English reprint edition copyright ©2004 by PEARSON EDUCATION ASIA
LIMITED and TSINGHUA UNIVERSITY PRESS.

Original English language title from Proprietor’s edition of the Work.

Original English language title: The Unified Software Development Process by
Ivar Jacobson, Grady Booch, James Rumbaugh, Copyright © 1999. All Rights
Reserved.

Published by arrangement with the original publisher, Pearson Education, Inc.,
publishing as Pearson Education, Inc.

This edition is authorized for sale and distribution only in the People’s Republic
of China (excluding the Special Administrative Region of Hong Kong, Macao
SAR and Taiwan).

A A5 B ENRE B Pearson Education, Inc #0515 46 K3 IR IR B AT »

For sale and distribution in the People’s Republic of China
exclusively (except Taiwan, Hong Kong SAR and Macao SAR).
SERTFHREARKMEREA (FEETEESE. RIVENTHRMPEAD
WX) HERT.

R TRBUREERAEREES BEF: 01-2004-3047

i, MR, BEBIE: 010-62782989 13901104297 13801310933
%%ﬁgg Beroon Eson (B B R Tty sg1310038,

EHERESR B (CIP) iR
4 — 8 {4 IF K i1 #2 =The Unified Software Development Process / (¥£) H%&
Aiid#h (Jacobson, D, (3£) #i& (Booch, G), (32) BA# (Rumbaugh,].) ¥.
—RER. —IbR: WK, 2005.1

(R TREEBRA
ISBN 7-302-09917-0

[.%: - 1. OO @8- M. HHFRK—HKC V. TP311.52

b AR A AR CIP $iB %S (2004) 2 119651 5

H R #. HEXEHmit 0 Hb. dEREERFETRA
http://www. tup. com. cn HB M. 100084
B . 010-62770175 TP . 010-62776969

ST . SCTT

i@t BRxR

OB . LRHHRARERST

s ST EREABEEITT

s HEBESEARRTHR

. 148X 210 EP3¥. 15.5 =¥ 395 FF

;2005 4E 1 ASSIMR 20054E 1 A%1 KENRI

; ISBN 7-302-09917-0/TP - 6820

: 1~3000

: 29,00 75

S8 a0 55 D Dk

FHPMEEXFAE REOULRT B BASHEFRASE, FSHERSE
MR R A, BER RIS, (010)62770175-3103 §(010) 62795704

Preface

here is a belief held by some that professional enterprises should be organized

around the skills of highly trained individuals. They know the work to be done

and just do it! They hardly need guidance in policy and procedure from the
organization for which they work.

This belief is mistaken in most cases, and badly mistaken in the case of software
development. Certainly, software developers are highly trained, but the profession is
still young. Consequently, developers need organizational guidance, which, in this
book, we refer to as the “software development process.” Moreover, because the
process we set forth in this book represents the bringing together of previously sepa-
rate methodologies, we feel justified in calling it the “Unified Process.” It not only
unifies the work of the three authors but incorporates the numerous contributions of
other individuals and companies that contributed to the UML, as well as a significant
number of key contributors at Rational Software Corporation. It draws significantly
from the on-the-spot experience of hundreds of user organizations working with early
versions of the process at customer sites.

A symphony orchestra conductor, for example, does little more during a perfor-
mance than tell the players when to start and help them stay together. He or she can
do so little because the conductor has guided the orchestra during rehearsals and
preparation of the score, and because each musician is highly skilled on his own

xvil

Preface

instrument and actually plays it independently of the other orchestra members. More
importantly for our purpose, each musician follows a “process” laid out long ago by
the composer. It is the musical score that provides the bulk of the “policy and proce-
dure” that guides the performance. In contrast, software developers do not play inde-
pendently. They interact with each other and the users. They have no score to
follow—until they have a process.

The need for process promises to become more critical, particularly in compa-
nies or organizations in which the software systems are “mission-critical,” such as
financial, air traffic control, defense, and telecommunications systems. By this we
mean that the successful conduct of the business or execution of the public mission
depends upon the software that supports it. These software systems are becoming
more complex, their time to market needs to shrink, and their development, in turn,
is becoming more difficult. For reasons such as these, the software industry needs a

process to guide developers, just as an orchestra needs a composer’s score to guide a
performance.

What Is a Software Development Process?

A process defines who is doing what when and how to reach a certain goal. In soft-
ware engineering the goal is to build a software product or to enhance an existing
one. An effective process provides guidelines for the efficient development of quality
software. It captures and presents the best practices that the current state of the art
permits. In consequence, it reduces risk and increases predictability. The overall
effect is to promote a common vision and culture.

We need such a process to serve as a guide for all the participants—customers,
users, developers, and executive managers. Any old process will not do; we need one
that will be the best process the industry is capable of putting togéther at this point in
its history. Finally, we need a process that will be mdely available so that all the
stakeholders can understand its role in the development under consideration.

A software development process should also be capéble of evolving over many
years. During this evolution it should limit its reach at any given point in time to the
realities that technologies, tools, people, and orgamummal patterns permit.

8 Technologies. Process must be built on technologies—programming lan-
guages, operating systems, computer systems, network capabilities, devel-
opment environments, and so on—thit are usable at the time the process is
to be used. For example, twenty years #igo visual modeling was not really
mainstream. It was too expensive. At that time, a process builder almost had
to assume that hand-drawn diagrams would be used. That assumption greatly
limited the degree to which a process originator could build modeling into the
process.

s Tools. Process and tools must develop in parallel. Tools are integral to process.
To put it another way, a widely used process can support the investment that
creates the tools that support it.

Preface xix

® People. A process builder must limit the skill set needed to operate the process
to the skills that current developers possess or target ones that developers can
be quickly trained to use. In many areas it is now possible to embed
techniques that once required extensive skill, such as checking model draw-
ings for consistency, in computer-based tools.

w Organizational patterns. While software developers may not be as indepen-
dently expert as symphony musicians, they are far from the automaton work-
ers on whom Frederick W. Taylor based “scientific management” one hundred
years ago. The process builder has to adapt the process to today’s realities—
the facts of virtual organization; working at a distance through high-speed
lines; the mix of partial owners (in small start-ups), salaried employees, con-
tract workers, and outsourcing subcontractors; and the continuing shortage of
software developers.

Process engineers need to balance these four sets of circumstances. Moreover,
the balance must exist not just now but into the future. The process builder must
design the process so it can evolve, just as a software developer tries to develop a
system that not only works this year but evolves successfully for years to come. A
process needs to mature for several years before it achieves the level of stability and
maturity that will enable it to stand up to the rigors of commercial product develop-
ment while holding the risk of its use to a reasonable level. Developing a new product
is risky enough by itself without adding to it the risk of a process insufficiently tested
by actual experience. Under these circumstances, a process can be stable. Without
this balance of technologies, tools, people, and organization, using the process would
be quite risky.

Goals of the Book

This book presents the software process that was constantly on our minds when we
developed the Unified Modeling Language. While UML gives us a standard way to
visualize, specify, construct, document, and communicate the artifacts of a software-
intensive system, we of course recognize that such a language must be used within
the context of an end-to-end software precess. UML is a means, not an end. The ulti-
mate end is a robust, resilient, scaleable software application. It takes both a process
and a language to get there, and illustrating the process postion is the goal of this
book. While we provide abﬁefappendixontheUm, it is not intended to be com-
prehensive or detailed. For a detailed UML tutorial refer to The Unified Modeling
Language User Guide [11]. For a comprehensive UML reference refer to The Unified
Modeling Language Reference Manual [12].

Audience

The Unified Software Development Process can be used by anyone involved in the
development of software. It is primarily addressed to members of the development

team who deal with the life-cycle activities requirements, analysis, design, imple-
mentation, and testing—that is, in work that results in UML models. Thus, for
instance, this book is relevant to analysts and end users (who specify the required
structure and behavior of a system), application developers (who design systems that
satisfy those requirements), programmers (who turn those designs into executable
code), testers (who verify and validate the system’s structure and behavior), compo-
nent developers (who create and catalogue components), and project and product
managers.

This book assumes a basic grasp of object-oriented concepts. Experience in soft-

ware development and in an object-oriented programming language is also helpful,
but not required.

Approach of the Book

We give the most space in this book to those activities—requirements, analysis, and
design—on which UML places primary emphasis. It is in these fields of emphasis
that the process develops the architecture of complex software systems. We do, how-
ever, treat the entire process, although in less detail. Still, it is the executable program
that finally runs. To get there, a project depends on the efforts of every member of its
team as well as the support of the stakeholders. As you will see, the process rests on a
tremendous variety of activities. Many artifacts must be produced and kept track of.
All the activities must be managed.

A complete account of a comprehensive, full life-cycle process is beyond the
scope of any one book. Such a book would have to cover design guidelines, templates
for artifacts, quality indicators, project management, configuration management,
metrics, and more—much more! With the development of on-line access, that “more”
is now available, and it can be updated as new developments dictate. For this, we
refer you to the Rational Unified Process, a new Web-enabled software product that
guides software development teams to more effective software development prac-
tices. (See http://www.rational.com for more information.) In covering the full soft-
ware life cycle, the Rational Unified Process extends the Untified Process beyond
areas described in this book and provides additional workflows that are not covered in
this book or are mentioned only in passing, such as business modeling, project man-
agement, and configuration management.

History of the Unified Protess

The Unified Process is balanced because it is the end product of three decades of
development and practical use. Its development as a product follows a path (see Fig-
ure P.1) from the Objectory Process (first released in 1987) via the Rational Objec-
tory Process (released in 1997) to the Rational Unified Process (released in 1998). Its
development has been influenced by many sources. We don’t intend to try to identify
them all (we actually don’t know what they all are) and leave that for software arche-
ologists to research. However, we will describe the impact of the Ericsson and Ratio-
nal approaches to the product as well as several other sources.

Several other sources

e o

The Rational Approach UML

The Ericsson Approach

Figure P.1 The development of the Unified Process. (Versions of the product are
denoted in gray rectangles.)

The Ericsson Approach

The Unified Process has deep roots. To employ the language of Peter F. Drucker, it is
a “knowledge-based innovation.” “There is a protracted span between the emergence
of new knowledge and its distillation into usable technology,” he advises us. “Then
there is another long period before this new technology appears in the marketplace in
products, processes, or services.” [1]

One reason for this long lead-time is that knowledge-based innovation is
grounded on the bringing together of many kinds of knowledge, and this takes time.
Another reason is that the people who have to make the new idea effective need time
to digest it and spread it to others.

As a first step toward illuminating the development of the Unified Process, let
us go back to 1967 and outline more specifically what Ericsson achieved [14], [15],
[16]. Ericsson modeled the whole system as a set of interconnected blocks (in UML
these are known as “subsystems” and implemented as “components”). They assem-
bled the lowest-level blocks into higher-level subsystems to make the system more
manageable. They found the blocks by working through the previously specified
traffic cases—now called “use cases.” For each use case, they identified the blocks
that cooperate to realize it. Knowing the responsibilities of each block, they prepared
a specification for it. Their design activities resulted in a set of static block diagrams
with their interfaces, and groupings into subsystems. These block diagrams corre-
spond directly to a simplified version of UML class or package diagrams—simplified
in that it only showed associations used for communications.

Preface

The first work product in the design activities was a software architecture de-
scription. It was based on understanding the most critical requirements. It described
briefly each block and their groupings into subsystems. A set of block diagrams
described the blocks and their interconnections. Over the interconnections, signals,
that is, a kind of message, were communicated. All messages were described one by
one in a message library. The software architecture description and the message
library were key documents that guided the development work, but they were also
used to present the system to customers. At that time (1968) customers were not
used to having software products presented to them by means similar to engineering
blueprints.

For each use case, the engineers prepared either a sequence diagram or a collabo-
ration diagram (now further developed in the UML). These diagrams showed how
the blocks dynamically communicate to realize the use case. They prepared a spe-
cification in the form of a state graph (including states and transitions only) and a
state-transition graph (a simplified version of the UML activity diagrams). This
approach, designing with blocks with well-defined interfaces, was key to the success.
Now a new configuration of the system could be created—for instance, for a new cus-
tomer—Dby exchanging a block with another one that provided the same interfaces.

Now, the blocks were not just subsystems and source-code components; they
were compiled into executable blocks, they were installed in the target machine one
by one, and it was established that they worked with all the rest of the executable
blocks. Beyond that, they must be able to install each new or changed executable
block in the field in a running system while it was executing calls for telephone sys-
tems operating 100% of the time. One does not shut down such a system just to make
changes. It is like changing tires while a car is moving 60 miles an hour.

In essence, the approach used was what we today call component-based develop-
ment. Ivar Jacobson was the originator of this development method. He guided its
evolution into a software development process over the many years of the pre-Objec-
tory period.

The Specification and Description Language
A significant development during this period was the issuance in 1976 by CCITT, the

ipternational body for standardization in the telecommunications field, of the Specifi-
cation and Description Language (SDL) for the functional behavior of telecommuni-
cations systems. This standard, significantly influenced by the Ericsson approach,
specified a systent as a set of interconnected blocks that communicated with each
other solely through messages (called “signals” in the standard). Each block owned
a set of “processes,” which was the SDL term for active classes. A process had in-
stances much as classes do in object-oriented terms. Process instances interacted
by messages, It recommended diagrams that were specializations of what UML
now calls class diagrams, activity diagrams, collaboration diagrams, and sequence
dia; S,

g"l?hr?xs, SDL was a specialized object-modeling standard. Periodically updated, it
is still in use by more than 10,000 developers and supported by several tool vendors.

Developed originally more than 20 years ago, it was far ahead of its time. However,
it was developed at a time when object modeling had not matured. SDL will likely
be supplanted by the Unified Modeling Language, which was standardized in
November 1997.

Objectory

In 1987 Ivar Jacobson left Ericsson and established Objectory AB in Stockholm.
During the next eight years he and his associates developed a process product called
Objectory (“Objectory” is an abbreviation of “Object Factory.”). They extended it to
industries outside of telecommunications and to countries beyond Sweden.

Although the concept of the use case had been present in the work at Ericsson,
it now had a name (which was introduced at the OOPSLA conference in 1987), a
diagramming technique was developed, and the idea was extended to embrace a vari-
ety of applications. That it is use cases that drive development became more clear.
That it is architecture that guides the developers and informs the stakeholders came
to the fore.

The successive workflows were represented in a series of models: requirements-
use cases, analysis, design, implementation, and test. A model is a perspective of a
system. The relationships between the models in this series were important to devel-
apers as a way of following a feature from one end of the model series to the other
end. In fact, traceability became a prerequisite of use-case-driven development.
Developers could trace a use case through the model sequence to the source code or,
when problems arose, back again.

Development of the Objectory process proceeded in a series of releases, from
Objectory 1.0 in 1988 to the first on-line version, Objectory 3.8, in 1995 (an overview
of Objectory is presented in [2]).

It is important to note that the Objectory product itself came to be viewed as a
system. This way of describing the process—as a system product—provided a better
way to develop a new version of Objectory from an earlier one. This way of design-
ing Objectory made it easier to tailor it to meet the particular needs of different devel-
opment organizations. The fact that the Objectory software development process
itself was engineered was a unique feature.

The experience in developing Objectory also provided insights into how to engi-
neer the processes on which a business in general operates. The same principles were
applicable and were incorporated in a 1995 book [3].

The Rational Approach

Rational Software Corporation acquired Objectory AB in the fall of 1995 and the task
of unifying the basic principles underlying the existing software development pro-
cesses gained new urgency. Rational had developed a number of software develop-
ment practices, many of which were complementary to those embodied in Objectory.

For example, “In 1981, Rational set out to produce an interactive environment
that would improve productivity for the development of large software systems,”

xxiv Preface

James E. Archer Jr. and Michael T. Devlin recalled in 1986 {4]. In this effort, object-
oriented design, abstraction, information hiding, reusability, and prototyping were
important, they went on to say.

Scores of books, papers, and internal documents detail Rational developments
since 1981, but perhaps the two most important contributions to process were the
emphases on architecture and iterative development. For instance, in 1990 Mike
Devlin wrote a vision paper on an architecture-driven iterative development process.
Philippe Kruchten, in charge of the Architecture Practice within Rational, authored
papers on iteration and architecture.

We cite one, an article on an architectural representation in four views: the logi-
cal view; the process view; the physical view; and the development view, plus an
additional view that illustrates the first four views with uses cases or scenarios {6].
The value of having a set of views, rather than trying to cram everything into one type
of diagram, grew out of Kruchten’s experience on several large projects. Multiple
views enabled both stakeholders and developers to find what they needed for their
diverse purposes in the appropriate view.

Some have perceived iterative development as somewhat chaotic or anarchic.
The four-phase approach (inception, elaboration, construction, and transition) was
devised to better structure and control progress while iterating. The phases impose
order on the iterations. The detailed planning of the phases and ordering of the itera-
tions within phases was a team effort with Walker Royce and Rich Reitman, as well
as the continuing participation of Grady Booch and Philippe Kruchten.

Booch was on the scene from the very beginning of Rational, and in 1996 in one
of his books he cited two “first principles” that bear upon architecture and iteration:

® “An architecture-driven style of development is usually the best approach for
the creation of most complex software-intensive projects.”

8 “A successful object-oriented project must apply an incremental and iterative
process.” {71

Rational Objectory Process: 1995-1997

At the time of the merger, Objectory 3.8 had shown how a software development
process as a product could be developed and modeled. It had designed the original
architecture of a software development process. It had identified a set of models that
recorded the outcome of the process. In areas such as use-case modeling, analysis,
and design, it was well developed. In other areas—requirements management other
than use cases, implementation, and test—it was less well developed. Moreover, it
contained little on project management, configuration management, deployment, and
the preparation of the development environment (tools and process procurement).
Now Rational’s experience and practices were added to form the Rational Objec-
tory Process 4.1. The phases and the controlled iterative approach, in particular, were
added. Architecture was made explicit in the form of an architecture description—the
“bible” of the software development organization. A precise definition of architecture

Preface XXV

was developed. It treated architecture as being the significant parts of the organiza-
tion of the system. It depicted the architecture as architectural views of the models.
Tterative development was advanced from a relatively general concept to a risk-driven
approach that put architecture first.

At this time UML was in development and was used as the modeling language of
the Rational Objectory Process (ROP). The authors of this book contributed as the
original developers of UML. The process development team, headed by Philippe
Kruchten, alleviated some of the weaknesses in ROP by strengthening project man-
agement, for instance, based on contributions from Royce [8].

Unified Modeling Language

The need for a uniform and consistent visual language in which to express the results
of the rather numerous object-oriented methodologies extant in the early 1990s had
been evident for some time.

During this period Grady Booch, for example, was the author of the Booch
method [9]. James Rumbaugh was the principal developer at the General Electric
Research and Development Center of OMT (Object Modeling Technique) [10] When
he joined Rational in October 1994, the two began an effort, in concert with many of
Rational’s customers, to unify their methods. They released version 0.8 of the Unified
Method in October 1995, about the same time that Ivar Jacobson joined Rational.

The three, working together, released Unified Modeling Language 0.9. The effort
was expanded to include other methodologists and a variety of companies, including
IBM, HP, and Microsoft, each of which contributed to the evolving standard. In
November 1997 after going through the standardization process, the Unified Model-
ing Language version 1.1, was promulgated as a standard by the Object Management
Group. For detailed information refer to the User Guide [11] and the Reference Man-
ual [12].

UML was used for all models in the Rational Objectory Process.

Rational Unified Process

During this period Rational acquired or merged with other software tool companies.
Each brought to the mix expertise in process areas that further expanded the Rational
Objectory process:

Requisite Inc. brought experience in requirements management.

® SQA Inc. had developed a test process to go with its test product, adding to
Rational’s long experience in this field.

@ Pure-Atria added its experience in configuration management to that of
Rational.

8 Performance Awareness added performance testing and load testing

w Vigortech added expertise in data engineering.

XXVi

Preface

The process was also expanded with a new workflow for business modeling,
based on [3], that is used to derive requirements from the business processes the soft-
ware was to serve. It also was extended to design user interfaces driven by use cases
(based on work done at Objectory AB).

By mid-1998 the Rational Objectory Process had become a full-fledged process
able to support the entire software development life cycle. In so doing, it unified a
wide variety of contributions, not only by the three present authors but by the many
sources from which Rational and the UML were able to draw upon. In June, Rational
released a new version of the product, the Rational Unified Process 5.0 [13]. Many
elements of this proprietary process now become available to the general public for
this first time in the form of this book.

The name change reflects the fact that unification had taken place in many
dimensions: unification of development approaches, using the Unified Modeling
Language, and unification of the work of many methodologists—not just at Rational
but also at the hundreds of customer sites that had been using the process over many
years.

Acknowledgments

A project of this magnitude is the work of many people, and we would like to
acknowledge as many as is practical by name.

For Contributions to This Book

Birgitte Lgnvig prepared the Interbank system example and worked it through all
models. This is the primary example used throughout the book.

Patrik Jonsson extracted material from the Rational Objectory Process documen-
tation and arranged it in the order of the proposed chapters. He also assisted in the
preparation of the examples. In doing so, he contributed many ideas on how best to
present the Unified Process.

Ware Myers participated in the development of this book from the initial outlines
forward. He took first drafts prepared by the lead author and tuned them into more
readable English prose.

Of the reviewers we particularly thank Kurt Bittner, Cris Kobryn, and Earl Eck-
lund, Jr. In addition, we are most appreciative of the reviews by Walker Royce,
Philippe Kruchten, Dean Leffingwell, Martin Griss, Maria Ericsson, and Bruce Katz.
The reviewers also include Pete McBreen, Glenn Jones, Johan Galle, N. Venu Gopal,
David Rine, Mary Loomis, Marie Lenzi, Janet Gardner, and some anonymous
reviewers, all of whom we want to thank.

Terry Quatrani of Rational improved the English in Chapters 1-5. Karen Tongish
copyedited the whole book. We thank both of them.

In particular, we want to thank Stefan Bylund who reviewed the drafts exten-
sively and suggested improvements in detail, many of which we incorporated. His
contributions have substantially increased the quality of the book.

Preface Xxvii

Over The Years

We also want to thank several people who have over the years helped us to “get the
process right” and supported the work in its various forms. Specifically, we would
like to thank the following individuals: Stefan Ahlquist, Ali Ali, Gunilla Andersson,
Kjell S. Andersson, Sten-Erik Bergner, Dave Bernstein, Kurt Bittner, Per Bjork,
Hans Brandtberg, Mark Broms, Stefan Bylund, Ann Carlbrand, Ingemar Carlsson,
Margaret Chan, Magnus Christerson, Geoff Clemm, Catherine Connor, Hakan Dahl,
Stephane Desjardins, Mike Devlin, Hakan Dyrhage, Susanne Dyrhage, Staffan
Ehnebom, Christian Ehrenborg, Maria Ericsson, Gunnar M. Eriksson, Iain Gavin,
Carlo Goti, Sam Guckenheimer, Bjorn Gullbrand, Sunny Gupta, Marten Gustafsson,
Bjorn Gustafsson, Lars Hallmarken, David Hanslip, Per Hedfors, Barbara Hedlund,
Jorgen Hellberg, Joachim Herzog, Kelli Houston, Agneta Jacobson, Sten Jacobson,
Paer Jansson, Hakan Jansson, Christer Johansson, Ingemar Johnsson, Patrik Jonsson,
Dan Jonsson, Bruce Katz, Kurt Katzeff, Kevin Kelly, Anthony Kesterton, Per Kil-
gren, Rudi Koster, Per Kroll, Ron Krubeck, Mikael Larsson, Bud Lawson, Dean
Leffingwell, Rolf Leidhammar, Hakan Lidstrom, Lars Lindroos, Fredrik Lindstrom,
Chris Littlejohns, Andrew Lyons, Jas Madhur, Bruce Malasky, Chris McClenaghan,
Christian Meck, Sue Mickel, Jorma Mobrin, Christer Nilsson, Rune Nilsson, Anders
Nordin, Jan-Erik Nordin, Roger Oberg, Benny Odenteg, Erik Ornulf, Gunnar Over-
gaard, Karin Palmkvist, Fabio Peruzzi, Janne Pettersson, Gary Pollice, Tonya Prince,
Leslee Probasco, Terry Quatrani, Anders Rockstrom, Walker Royce, Goran Schefte,
Jeff Schuster, John Smith, John Smith, Kjell Sorme, Ian Spence, Birgitta Spiridon,
Fredrik Stromberg, Goran Sundelof, Per Sundquist, Per-Olof Thysselius, Mike
Tudball, Karin Villers, Ctirad Vrana, Stefan Wallin, Roland Wester, Lars Wetterborg,
Brian White, Lars Wiktorin, Charlotte Wranne, and Jan Wunsche..

In addition, the following people have given the lead author personal support
over the years, for which he is highly appreciative: Dines Bjorner, Tore Bingefors,
Dave Bulman, Larry Constantine, Goran Hemdal, Bo Hedfors, Tom Love, Nils
Lennmarker, Lars-Olof Noren, Dave Thomas, and Lars-Erik Thorelli.

Finally, We Would Like to Thank in Particular

Mike Devlin, president of Rational Software Corporation, for his belief in the Objec-
tory process as a product to help those developing software worldwide, and for his
continued support in using effective software process as a driver for the development
of software tools.

And lastly, we would like to thank Philippe Kruchten, director of the Rational
Unified Process, and all the members of the Rational process team for integrating
the best of Objectory with Rational’s best practices and the UML, while preserving
the values of each. In addition, we could not have reached this objective without
Philippe’s personal commitment and perseverance to the task of building, quite sim-
ply, the best software process the world has ever seen.

xxviit

Preface

Process Breaks Through

Through this book and its related books, on-line versions, and tools, software devel-
opment process comes of age. The Unified Process drew its inspiration from many
sources. Already it is being widely used. It provides a common medium of process
understanding from which management, developers, and stakeholders can draw.
Still, much work remains to be done. Developers have to learn unified ways of
working. Stakeholders and management have to support them. For many software
organizations, the breakthrough is only potential. You can make it actual.

Ivar Jacobson
Palo Alto, California
December 1998

ivar@rational.com

References

{11 Peter E Drucker, “The Discipline of Innovation,” Harvard Business Review,
May-June, 1985; reprinted Nov.-Dec. 1998, pp. 149-157.

{2} Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard,
Object-Oriented Software Engineering: A Use-Case Driven Approach, Reading,
MA: Addison-Wesley, 1992.

{3] Ivar Jacobson, Maria Ericsson, and Agneta Jacobson, The Object Advantage:
Business Process Reengineering with Object Technology, Reading, MA:
Addison-Wesley, 1995.

{4] James E. Archer Jr. and Michael T. Devlin, “Rational’s Experience Using Ada for
Very Large Systems,” Proceedings of the First International Conference on Ada
Programming Language Applications for the NASA Space Station, June, 1986.

{6) Philippe B. Kruchten, “The 4 + 1 View Model of Architecture,” IEEE Software,
November 1995, pp. 42-50.

[7] Grady Booch, Object Solutions: Managing the Object-Oriented Project,
Reading, MA: Addison-Wesley, 1996.

[8] Walker Royce, Software Project Management: A Unified Framework, Reading,
MA: Addison-Wesley, 1998.

[9) Grady Booch, Object-Oriented Analysis and Design with Applications, Redwood
City, CA: Benjamin/Cummings, 1994.

[10] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and
William Lorensen, Object-Oriented Modeling and Design, Englewood Cliffs,
NI: Prentice Hall, 1991.

[11] Grady Booch, James Rumbaugh, and Ivar Jacobson, The Unified Modeling
Language User Guide, Reading, MA: Addison-Wesley, 1998.

Proface XXX

[12] James Rumbaugh, Ivar Jacobson, and Grady Booch, The Unified Modeling
Language Reference Manual, Reading, MA: Addison-Wesley, 1998.

[13] Philippe Kruchten, The Rational Unified Process: An Introduction, Reading,
MA: Addison-Wesley, 1998.

[14] Ivar Jacobson, Concepts for Modeling Large Real Time Systems, Chapter 2, Dis-
sertation, Department of Computer Systems, The Royal Institute of Technology,
Stockholm, Sept. 1985.

[15] Ivar Jacobson, “Object-Orientation as a Competitive Advantage,” American
Programmer, Oct. 1992.

[16) Ivar Jacobson, “A Large Commercial Success Story with Objects, Succeeding
with Objects,” Object Magazine, May 1996.

Contents

Preface xvii

Part I: The Unified Software Development Process 1

Chapter 1: The Unified Process: Use-Case Driven,
Architecture-Centric, Iterative, and Incremental 3

1.1 The Unified Process in a Nutshell 4
1.2 The Unified Process Is Use-Case Driven 5
1.3 The Unified Process Is Architecture-Centric 6
1.4 The Unified Process Is lterative and Incremental 7
1.5 The Life of the Unified Process 8
151 TheProduct 9
15.2 Phases withinaCycle 11
1.6 An Integrated Process 13

