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Preface
to the Encyclopaedia Subseries
on Operator Algebras
and Non-Commutative Geometry

The theory of von Neumann algebras was initiated in a series of papers by Murray
and von Neumann in the 1930’s and 1940°’s. A von Neumann algebra is a self-adjoint
unital subalgebra M of the algebra of bounded operators of a Hilbert space which
is closed in the weak operator topology. According to von Neumann’s bicommutant
theorem, M is closed in the weak operator topology if and only if it is equal to the
commutant of its commutant. A factor is a von Neumann algebra with trivial centre
and the work of Murray and von Neumann contained a reduction of all von Neumann
algebras to factors and a classification of factors into types I, II and I11.

C*-algebras are self-adjoint operator algebras on Hilbert space which are closed
in the norm topology. Their study was begun in the work of Gelfand and Naimark
who showed that such algebras can be characterized abstractly as involutive Banach
algebras, satisfying an algebraic relation connecting the norm and the involution.
They also obtained the fundamental result that a commutative unital C*-algebra is
isomorphic to the algebra of complex valued continuous functions on a compact
space - its spectrum.

Since then the subject of operator algebras has evolved into a huge mathematical
endeavour interacting with almost every branch of mathematics and several areas of
theoretical physics.

Up into the sixties much of the work on C*-algebras was centered around rep-
resentation theory and the study of C*-algebras of type I (these algebras are char-
acterized by the fact that they have a well behaved representation theory). Finite
dimensional C*-algebras are casily seen to be just direct sums of matrix algebras.
However, by taking algebras which are closures in norm of finite dimensional al-
gebras one obtains already a rich class of C*-algebras — the so-called AF-algebras
- which are not of type I. The idea of taking the closure of an inductive limit of
finite-dimensional algebras had already appeared in the work of Murray-von Neu-
mann who used it to construct a fundamental example of a factor of type Il — the
“hyperfinite” (nowadays also called approximately finite dimensional) factor.

One key to an understanding of the class of AF-algebras turned out to be X -theory.
The techniques of K -theory, along with its dual, Ext-theory, also found immediate
applications in the study of many new examples of C*-algebras that arose in the end
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of the seventies. These examples include for instance “the noncommutative tori” or
other crossed products of abelian C*-algebras by groups of homeomorphisms and
abstract C*-algebras generated by isometries with certain relations, now known as
the algebras ¢9,. At the same time, examples of algebras were increasingly studied
that codify data from differential geometry or from topological dynamical systems.

On the other hand, a little earlier in the seventies, the theory of von Neumann
algebras underwent a vigorous growth after the discovery of a natural infinite family
of pairwise nonisomorphic factors of type III and the advent of Tomita-Takesaki
theory. This development culminated in Connes’ great classification theorems for
approximately finite dimensional (“injective”) von Neumann aigebras.

Perhaps the most significant area in which operator algebras have been used is
mathematical physics, especially in quantum statistical mechanics and in the foun-
dations of quantum field theory. Von Neumann explicitly mentioned quantum theory
as one of his motivations for developing the theory of rings of operators and his
foresight was confirmed in the algebraic quantum field theory proposed by Haag
and Kastler. In this theory a von Neumann algebra is associated with each region
of space-time, obeying certain axioms. The inductive limit of these von Neumann
algebras is a C*-algebra which contains a lot of information on the quantum field
theory in question. This point of view was particularly successful in the analysis of
superselection sectors.

In 1980 the subject of operator algebras was entirely covered in a single big
three weeks meeting in Kingston Ontario. This teeting served as a review of the
classification theorems for von Neumann algebras and the success of K -theory as a
tool in C*-algebras. But the meeting also contained a preview of what was to be an
explosive growth in the field. The study of the von Neumann algebra of a foliation was
being developed in the far more precise C*-framework which would lead to index
theorems for foliations incorporating techniques and ideas from many branches of
mathematics hitherto unconnected with operator algebras.

Many of the new developments began in the decade following the Kingston
meeting. On the C*-side was Kasparov’s K K -theory — the bivariant form of K -theory
for which operator algebraic methods are absolutely essential. Cyclic cohomology
was discovered through an analysis of the fine structure of extensions of C*-algebras
These ideas and many others were integrated into Connes’ vast Noncommutative
Geometry program. In cyclic theory and in connection with many other aspects
of noncommutative geometry, the need for going beyond the class of C*-algebras
became apparent. Thanks to recent progress, both on the cyclic homology side as
well as on the K-theory side, there is now a well developed bivariant K-theory
and cyclic theory for a natural class of topological algebras as well as a bivariant
character taking K -theory to cyclic theory. The 1990’s also saw huge progress in the
classification theory of nuclear C*-algebras in terms of K -theoretic invariants, based
on new insight into the structure of exact C*-algebras.

On the von Neumann algebra side, the study of subfactors began in 1982 with the
definition of the index of a subfactor in terms of the Murray-von Neumann theory and
a result showing that the index was surprisingly restricted in its possible values. A
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rich theory was developed refining and clarifying the index. Surprising connections
with knot theory, statistical mechanics and quantum field theory have been found.
The superselection theory mentioned above turned out to have fascinating links to
subfactor theory. The subfactors themselves were constructed in the representation
theory of loop groups.

Beginning in the early 1990’s Voiculescu initiated the theory of free probability
and showed how to understand the free group von Neumann algebras in terms of
random matrices, leading to the extraordinary result that the von Neumann algebra M
of the free group on infinitely many generators has full fundamental group, i.e. pMp s
isomorphic to M for every non-zero projection p € M. The subsequent introduction
of free entropy led to the solution of more old problems in von Neumann algebras
such as the lack of a Cartan subalgebra in the free group von Neumann algebras.

Many of the topics mentioned in the (obviously incomplete) list above have
become large industries in their own right. So it is clear that a conference like the
one in Kingston is no longer possible. Nevertheless the subject does retain a certain
unity and sense of identity so we felt it appropriate and useful to create a series of
encylopaedia volumes documenting the fundamentals of the theory and defining the
current state of the subject.

In particular, our series will include volumes treating the essential technical
results of C*-algebra theory and von Neumann aigebra theory including sections
on noncommutative dynamical systems, entropy and derivations. It will include an
account of K-theory and bivariant K -theory with applications and in particular the
index theorem for foliations. Another volume will be devoted to cyclic homology
and bivariant K -theory for topological algebras with applications to index theorems.
On the von Neumann algebra side, we plan volumes on the structure of subfactors
and on free probability and free entropy. Another volume shall be dedicated to the
connections between operator algebras and quantum field theory.

October 2001 subseries editors:
Joachim Cuntz
Vaughan Jones



Introduction

Mathematics for infinite dimensional objects is becoming more and more
important today both in theory and application. Rings of operators, renamed
von Neumann algebras by J. Dixmier, were first introduced by J. von Neumann
fifty years ago, 1929, in [254] with his grand aim of giving a sound founda-
tion to mathematical sciences of infinite nature. J. von Neumann and his
collaborator F. J. Murray laid down the foundation for this new field of
mathematics, operator algebras, in a series of papers, [240], [241], [242],
[257] and [259], during the period of the 1930s and early in the 1940s. In
the introduction to this series of investigations, they stated Their solution
(to the problems of understanding rings of operators)! seems to be essential
Jor the further advance of abstract operator theory in Hilbert space under
several aspects. First, the formal calculus with operator-rings leads to them.
Second, our attempts to generalize the theory of unitary group-representations
essentially beyond their classical frame have always been blocked by the
unsolved questions connected with these problems. Third, various aspects of
the quantum mechanical formalism suggest strongly the elucidation of this
subject. Fourth, the knowledge obtained in these investigations gives an
approach to a class of abstract algebras without a finite basis, which seems
to differ essentially from all types hitherto investigated. Since then there has
appeared a large volume of literature, and a great deal of progress has been
achieved by many mathematicians. The motivations of Murray and von
Neumann seem to have been fully verified. Many important results and
powerful techniques were added to the theory. Various related fields of
mathematics have emerged, and a number of topics in this subject have
branched out to independent fields.

! Added by the author.
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The main characteristic of this subject can be stated as a complex of
analysis and algebra: the results are phrased in algebraic terms, while the
techniques are highly analytic. Sometimes, one might run into problems
directly related to the foundation of mathematics such as the continuum
hypothesis. One might be amazed to realize the possibility of such an
elaborated algebraic structure in this wild area involving high degrees of
infinity.

The theory of operator algebras is concerned with self-adjoint algebras
of bounded linear operators on a Hilbert space closed under the norm
topology, C*-algebras, or the weak operator topology, von Neumann
algebras. C*-algebras are characterized as a special class of Banach algebras
by means of a simple system of axioms. A concrete realization of a C*-algebra
as an algebra of operators on a Hilbert space is regarded as a representation
of the algebra. Thus, the study of C*-algebras consists of two parts: one is
concerned with the intrinsic structure of algebras and the other deals with
the representations of a C*-algebra. Needless to say, these two parts are
closely related, and indeed the algebraic structure of a C*-algebra is
studied through various representations of the algebra. Thus, this division
of the theory stays at a formal level. Nevertheless, the separation of problems
has positive effects: for instance, a systematic usage of inequivalent rep-
resentations of a C*-algebra provides flexible techniques even if it is given
as a concrete algebra of operators on a specially chosen Hilbert space. Indeed,
this freedom in choosing an appropriate representation is one of the main
merits of the axiomatic approach to operator algebras.

Being infinite dimensional, our problems require careful investigation of
approximation process; thus the study of topological structures is inevitable.
For this reason, the topological, analytical aspect of operator algebras
receives more of our attention than the algebraic aspect in this first volume.
After establishing the basic foundation in Chapter I, the Banach space
duality for operator algebras will be studied throughout the text. The reader
will find a strong similarity between our theory and measure theory on
locally compact spaces. In fact, the study of abelian C*-algebras will be
reduced to that of locally compact spaces, and a substantial part of our
theory is called noncommutative integration theory.

Each chapter begins with an introduction to its basic facts. Sections and
paragraphs with * sign are somewhat technical; the reader who wants to
get rather a quick grasp of the theory may postpone these parts. The sign **
indicates the end of the technical paragraph. Comments and historic back-
ground are placed at the end of each chapter and some sections as notes.
Complements to a section or a chapter and some results of special interest
are stated as exercises with t sign and references.

In the succeeding volume, the author will discuss further, among other
topics, noncommutative integration theory, the so-called Tomita-Takesaki
theory, automorphism groups of operator algebras, crossed products, infi-
nite tensor products, the structure of von Neumann algebras of type II1,



Introduction XIII

approximately finite dimensional von Neumann algebras, and the existence
of a continuum of nonisomorphic factors.

The author would like to express here his sincere gratitude to Professors
H. A. Dye, R. V. Kadison, D. Kastler, M. Nakamura, Y. Misonou and
J. Tomiyama from whom he received scientific as well as moral support at
several stages of the work. A major part of the preparation was done at the
University of Aix-Marseille-Luminy, ZiF, the University of Bielefeld, while
the author was on leave from the University of California, Los Angeles. He
acknowledges gratefully a generous support extended to him, for a part of
the preparation, from the Guggenheim Foundation. The author is very
grateful to Mrs. L. Beerman for typing the manuscript skillfully with great
patience.
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Chapter 1

Fundamentals of Banach Algebras
and C*-Algebras

0. Introduction

In this this first chapter, we lay the foundation for later discussion, giving
elementary results in Banach algebras and C*-algebras. The first three sec-
tions are devoted to the general Banach algebras. The most important results
in these sections are Theorem 2.5, Corollary 2.6, and Theorem 3.11, which
are really fundamental in the theory of Banach algebras. Discussion of
C*-algebras starts from Section 4. As an object of the theory of operator
algebras, a C*-algebra is a uniformly closed self-adjoint algebra 4 of bounded
linear operators on a Hilbert space $. The major task of the theory of
operator algebras is to find descriptions of the structure of {4,$}. This
problem splits into two problems:

(a) Find descriptions of the algebraic structure of 4 alone;
(b) Given an algebra 4, find all possible pairs { B,R} such that B is isomorphic
to A as an abstract algebra.

The first approach to problem (a) is to characterize a uniformly closed self-
adjoint algebra of bounded linear operators on a Hilbert space as an abstract
algebra, ie., without using a Hilbert space. A solution to this question is
given by postulates (i)—(vi) in Section 1, for a C*-algebra, and is proved in
Theorem 9.18. Problem (b) leads us to the representation theory of C*-
algebras. Namely, an action of a C*-algebra 4 is viewed as a representation
on a Hilbert space, and problem (b) is translated in this terminology as
follows:

(b') Find descriptions of all representations of a given C*-algebra.
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The obvious question after the postulates were once laid down is the existence
of representations, which is answered, as mentioned, by Theorem 9.18. It
turns out (Theorem 9.14) that there is a strong link between positive linear
functionals and representations. Section 9 is the highlight of the chapter.
A characterization of extreme points of the unit ball of a C*-algebra is given
in Section 10, which will be used in Chapter I1I to show that a W *-algebra
is unital. Section 11 is devoted to a sketch of finite dimensional C*-algebras
and their representations.

1. Banach Algebras

Let R and C denote always the real number field and the complex number
field, respectively.

Definition 1.1. Let 4 be a Banach space over C. If 4 is an algebra over
C in which the multiplication satisfies the inequality

[exll < Il
then A is called a Banach algebra.

The inequality
llx1yy ~ X2l < [Pxalfllys = vall + lx: = x2||”y2”

shows that the product xy is a continuous function of two variables x and y.
If E is a Banach space over C, then the set #(E) of all bounded operators
on E is a Banach algebra with the natural algebraic operations and norm.

Definition 1.2. If a Banach algebra 4 admits a map: x — x* € 4 with the
following properties:
(1) O*)* = x;
(i) (x + y)* = x* + y*;
(iii) (ox)* = &x*;
(iv) (xy)* = y*x*;
) el = il
for every x,y € A and a € C, then A is called an involutive Banach algebra

and the map: xr x* the involution (or *-operation) of A. If the involution
of A satisfies the following additional condition:

(i) (b= = [e*[lxl] x & 4;

then A is called a C*-algebra.
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Let Q be a locally compact space. The set C_(2) of all continuous func-
tions on § vanishing at infinity is a C*-algebra with the following structure:

(Ax + py)(w) = Ax{(w) + py(w);
(xylw) = x(w)y(w);
x¥w) = x(w);

lIx|| = sup{|x(w)}:w € 2};

for every x,y € C (), 4,u € C and w € 2. The C*-algebra C_ () is abelian.
The algebra C_(€2) has an identity if and only if Q is compact. In this case,
C () is denoted simply by C(£).

If $ is a Hilbert space, then the Banach algebra #($) of all bounded
operators on § is a C*-algebra with the involution: x+— x* defined as the
adjoint operator x* of x. If the dimension of § is greater than one, then
ZL(9) is not abelian.

Proposition 1.3. If A is a Banach algebra with an identity 1, then there exists
anorm |||l on A such that: (i) the new norm ||-||o is equivalent to the original
norm ||-||; (i) (4,)|-||o) is @ Banach algebra; (iii) [|1]|, = 1.

PrROOF. For each x € A4, let L, denote the operator: y e 4+ xy € A. The
map: x+ L, is then injective because L,1 = x. Put ||x||, = ||L,||, x € 4. By
the inequality ||xy|| < ||x||||¥||, we have ||x]|o < ||x|| On the other hand, we
have

lxllo = <l = supfibexll:lIyll < 1} = I/l

Hence the norm |||, is equivalent to the original norm. Assertions (ii) and
(iii) are almost automatic now. Q.E.D.

By this proposition, we assume always that the norm of the identity is
one if it exists. A Banach algebra with an identity is said to be unital.

Remark 1.4.1f A is a unital involutive Banach algebra, then we have 1 * = 1.
Furthermore, if 4 is a unital C*-algebra, then the condition |l1]] = 1 follows
automatically from postulate (vi).

If a given involutive Banach algebra 4 is not unital, then we can imbed A
into a unital involutive Banach algebra A, as an ideal in the following way:
We take the direct sum 4 @ C as a linear space 4,, in which we define a
Banach algebra structure by

(AN o) = (xy + px + Ay,Au);
(x,)* = (x*7);
G =[xl + 14



