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Preface

This book provides a fundamental introduction to numerical analysis suitable for un-
dergraduate students in mathematics, computer science, physical sciences, and engi-
neering. It is assumed that the reader is familiar with calculus and has taken a struc-
tured programming course. The text has enough material fitted modularly for either a
single-term course or a year sequence. In short, the book contains enough material so
that instructors will be able to select topics appropriate to their needs.

Students of various backgrounds should find numerical methods quite interesting
and useful, and this is kept in mind throughout the book. Thus, there is a wide vari-
ety of examples and problems that help to sharpen one’s skill in both the theory and
practice of numerical analysis. Computer calculations are presented in the form of ta-
bles and graphs whenever possible so that the resulting numerical approximations are
easier to visualize and interpret. MATLAB programs are the vehicle for presenting the
underlying numerical algorithms.

Emphasis is placed on understanding why numerical methods work and their lim-
itations. This is challenging and involves a balance between theory, error analysis,
and readability. An error analysis for each method is presented in a fashion that is
appropriate for the method at hand, yet does not turn off the reader. A mathematical
derivation for each method is given that uses elementary results and builds the student’s
understanding of calculus. Computer assignments using MATLAB give students an
opportunity to practice their skills at scientific programming.

Shorter numerical exercises can be carried out with a pocket calculator/computer,
and the longer ones can be done using MATLAB subroutines. It is left for the instruc-
tor to guide the students regarding the pedagogical use of numerical computations.
Each instructor can make assignments that are appropriate to the available comput-



ing resources. Experimentation with the MATLAB subroutine libraries is encouraged.
These materials can be used to assist students in the completion of the numerical anal-
ysis component of computer laboratory exercises.

In this edition a section on Bézier curves has been added to the end of the chapter
on curve fitting. Additionally, the chapter on numerical optimization has been ex-
panded to include an introduction to both direct and derivative based methods for op-
timizing functions of one or more variables. A listing of the MATLAB programs in this
textbook is available upon request from the authors (http:/math.fullerton.edu/mathews/
numerical.html). An instructor’s solution manual for the exercise sets is available from
the publisher.

Previously, we took the attitude that any software program that students mastered
would work fine. However, many students entering this course have yet to master a
programming language (computer science students excepted). MATLAB has become
the tool of nearly all engineers and applied mathematicians, and its newest versions
have improved the programming aspects. So we think that students will have an easier
and more productive time in this MATLAB version of our text.
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Preliminaries

Consider the function f(x) = cos(x), its derivative f'(x) = —sin(x), and its an-
tiderivative F(x) = sin(x) + C. These formulas were studied in calculus. The former
is used to determine the slope m = f’(xo) of the curve y = f(x) at a point (xg, f(x0)),
and the latter is used to compute the area under the curve fora < x < b.

The slope at the point (r/2,0) is m = f’(/2) = —1 and can be used to find the
tangent line at this point (see Figure 1.1(a)):

mmn(e-3) 0= (e 3) =r+5

l.Oj

0.5 1 y=cos(x

0.0 T T T T X
0.5 1.0 1.5 2.0

Figure 1.1 (a) The tangent line to
the curve y = cos(x) at the point
(m/2,0).

-0.5 1
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Figure 1.1 (b) The area under the
curve y = cos(x) over the interval
[01 JT/2]‘ ‘

The area under the curve for 0 < x < 7/2 is computed using an integral (see Fig-
ure 1.1(b)):

area = fon/z cos(x)dx = F (%) — F(0) = sin (g—) ~0=

These are some of the results that we will need to use from calculus.

Review of Calculus

It is assumed that the reader is familiar with the notation and subject matter covered in
the undergraduate calculus sequence. This should have included the topics of limits,
continuity, differentiation, integration, sequences, and series. Throughout the book we
refer to the following results.

Limits and Continuity

Definition 1.1. Assume that f(x) is defined on an open interval containing x = xo,
except possibly at x = x itself. Then f is said to have the limit L at x = xo, and we
write
1) Iim f(x) =1L,

X—>XQ
if given any € > O there exists a § > O such that [f(x) — L| < € whenever 0 <
|x — xp] < 8. When the h-increment notation x = xo + h is used, equation (1)
becomes

) ,}i_lj})f(m+h)=la- A
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Definition 1.2. Assume that f(x) is defined on an open interval containing x = xg.
Then f is said to be continuous at x = xp if

3 Jim £() = £ (o).

The function f is said to be continuous on a set S if it is continuous at each point
x € S. The notation C"(S) stands for the set of all functions f such that f and its
first » derivatives are continuous on S. When § is an interval, say [a, b], then the
notation C"[a, b] is used. As an example, consider the function f(x) = x*/3 on the
interval [—1, 1]. Clearly, f(x) and f'(x) = (4/3)x!/3 are continuous on [—1, 1],
while f”(x) = (4/9)x~%/3 is not continuous at x = 0. A

Definition 1.3. Suppose that {x,}32, is an infinite sequence. Then the sequence is
said to have the limit L, and we write

¢y ”111'20 xp, =1L,

if given any € > 0, there exists a positive integer N = N(¢) such that n > N implies
that |x, — L] < €. A

When a sequence has a limit, we say that it is a convergent sequence. Another
commonly used notation is “x, — L as n — 00.” Equation (4) is equivalent to

3 lim (x, — L) =0.

n—oo
Thus we can view the sequence {€,}32, = {xn — L}, as an error sequence. The
following theorem relates the concepts of continuity and convergent sequence.

Theorem 1.1. Assume that f(x) is defined on the set S and xo € S. The following
statements are equivalent:

(a) The function f is continuous at xo.

©) ®)If lim x, = xo, then lim £ (xs) = £ (x0).

Theorem 1.2 (Intermediate Value Theorem). Assume that f € Cla, b] and L is

any number between f(a) and f(b). Then there exists a number ¢, with ¢ € (a, b),
such that f(c) = L.

Example 1.1. | The function f(x) = cos(x — 1) is continuous over [0, 1], and the constant

= 0.8 € (cos(0), cos(1)). The solution to f(x) = 0.8 over [0, 1] is ¢} = 0.356499.
Similarly, f (x) is continuous over [1, 2.5], and L = 0.8 € (cos(2.5), cos(1)). The solution
to f(x) =0.8over[1,2.5]isc2 = 1.643502. These two cases are shown in Figure 1.2. =&
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0.8
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0.2 Figure 1.2 The intermediate value
theorem applied to the function
X f(x) = cos(x — 1) over [0, 1] and

over the interval [1, 2.5].
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20 1
10 (xp, f(x5)) Figure 1.3 The extreme value
theorem applied to the function
: . , r . — X f(x) =35+ 59.5x — 66.5x% + 15x3
0.0 0.5 1.0 1.5 20 25 3.0 over the interval [0, 3].

Theorem 1.3 (Extreme Value Theorem for a Continuous Function). Assume that
f € Cla,b). Then there exists a lower bound Mj, an upper bound M>, and two
numbers x1, x € [a, b] such that

N M; = f(x1) < f(x) < f(x2) = M2  whenever x € [a, b].
We sometimes express this by writing

® M= fO)= min{fx)} and M= f(x)= Jmax {f(x)}.

Differentiable Functions
Definition 1.4. Assume that f(x) is defined on an open interval containing xo. Then
f is said to be differentiable at xp if

im fx) = f(xo)

xX—>Xxp X — XQ

&)
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exists. When this limit exists, it is denoted by f’(xp) and is called the derivative of f
at xo. An equivalent way to express this limit is to use the #-increment notation:

im 150 +h) — f(x0)

(10) lim ; = f'x0).

A function that has a derivative at each point in a set S is said to be differentiable
on S. Note that the number m = f/(xp) is the slope of the tangent line to the graph of
the function y = f(x) at the point (xg, f (x0))- A

Theorem 1.4. If f(x) is differentiable at x = xg, then f(x) is continuous at x = xp.

It follows from Theorem 1.3 that if a function f is differentiable on a closed inter-
val [a, b}, then its extreme values occur at the endpoints of the interval or at the critical
points (solutions of f’(x) = 0) in the open interval (a, b).

Example 1.2. The function f(x) = 15x3—66.5x%+59.5x +35 is differentiable on [0, 3].
The solutions to f’'(x) = 45x2 — 123x + 59.5 = 0 are x; = 0.54955 and x; = 2.40601.
The maximum and minimum values of f on [0, 3] are:

~ min{£(0), f(3), f(x1), f(x2)} = min{35, 20, 50.10438, 2.11850} = 2.11850
and
max{ f(0), f(3), f(x1), f(x2)} = max{35, 20, 50.10438, 2.11850} = 50.10438
(see Figure 1.3). .

Theorem 1.5 (Rolle’s Theorem). Assume that f € C[a, b] and that f’(x) exists for
all x € (a, b). If f(a) = f(b) = 0, then there exists a number c, with ¢ € (a, b), such
that f/(c) = 0.

Theorem 1.6 (Mean Value Theorem). Assume that f € Cla, b] and that f'(x)
exists for all x € (a, b). Then there exists a number ¢, with ¢ € (a, b), such that
an fo=LO=1@
—a
Geometrically, the mean value theorem says that there is at least one number ¢ €
(a, b) such that the slope of the tangent line to the graph of y = f(x) at the point
(¢, f(c)) equals the slope of the secant line through the points (a, f(a)) and (b, f(b)).

Example 1.3. The function f(x) = sin(x) is continuous on the closed interval [0.1, 2.1]
and differentiable on the open interval (0.1, 2.1). Thus, by the mean value theorem, there
is a number c¢ such that

') = fR.1) - f(0.1)  0.863209 — 0.099833

FO=="1"01 =~ 21-01

The solution to f’(c) = cos(c) = 0.381688 in the interval (0.1,2.1) is ¢ = 1.179174.
The graphs of f(x), the secant line y = 0.381688x + 0.099833, and the tangent line
y = 0.381688x + 0.474215 are shown in Figure 1.4. ]

= (.381688.
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1.0 1
f(b)

0.5 1

f(a) A

T T 7 X

T T
a 0.5 1.0 ¢ 1.5 2.0b

Figure 1.4 The mean value theorem applied to f(x) =
sin(x) over the interval [0.1, 2.1].

Theorem 1.7 (Generalized Rolle’s Theorem). Assume that f € C[a, b] and that
'), f7(x), ..., f™(x) exist over (a, b) and xg, X1, - . ., Xn € [a,b]. If f(xj) =0
for j =0,1,...,n,then there exists a number ¢, with ¢ € (a, b), such that f(”)(c) =0.

Integrals

Theorem 1.8 (First Fundamental Theorem). If f is continuous over [a, b] and F
is any antiderivative of fon [a, b], then

b
(12) / fx)dx = F(b)— F(a) where F'(x) = f(x).

Theorem 1.9 (Second Fundamental Theorem). If f is continuous over [a, b] and
Xx € (a, b), then

(13) = / F@dt = Fx).
x a

Example 1.4. The function f(x) = cos(x) satisfies the hypotheses of Theorem 1.9 over
the interval [0, v /2]; thus by the chain rule

d [*
e / cos(t) dt = cos(x?)(x2)’ = 2x cos(x?). [
0

Theorem 1.10 (Mean Value Theorem for Integrals). Assume that f € Cla, b).
Then there exists a number ¢, with ¢ € (a, b), such that

1 b
b—_—afa fF(x)dx = f(c).

The value f(c) is the average value of f over th: interval [a, b].



