/THEORY/IN/PRACTICE

Applied Software
Project Management
FSHRGMEER (Zam)

54:)6:00: FF

22:01:03: JH

10:Q2:58:GF

08:U2:07 FF

'Andrew Stellman & Jennifer Greene &

Applied Software

Project Management
THURHHEEE (goR)

H il N R

BBERRE (CIP) ¥ig
THARGGEER / (£) $i%/RE8 (Stellman, A.),
(3€) #4# (Greene,).) & . — A . — B KB

KEZMAR:, 2006.11
H4FE X Applied Software Project Management

ISBN 7-5641-0578-X

I.L. 0.0%. Of. O.%KHEFR-HEE
B -3 IV.TP311.52

o Bl i A B 518 CIP ki (2006) 48 121606 5

ILHE R EER & FRIC
ElF. 10-2006-255 &

©2006 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2006. Authorized reprint of the original English edition, 2006 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
% X & Ji i O'Reilly Media, Inc. % i 2006,

W PR d & dh ko RRRE R 2006, bR R A th B Ao 48 A% 2] i JRAR Ao 4K & ALY BT A A —— O'Reilly
Media, Inc. &% 7,

MALIRA . A BERAT, K5OI & IR AALATH X EH,

B A LRARGHEEE (HHK)

$£ B/ ISBN 7-5641-0578-X

TR/ Fkre

kit / MendeDesign, #fE

W R T/ HKEK¥EHEHE (press.seu.edu.cn)

W Hb/ BRPOAEEE 22 (BRBCZAED 210096)

N R/ b wEIRIERA R

F o OE T8TEHR x 980Kk 16 FA 20.25 Elzk
R R/ 20064 11 A 1ER 200648 11 A% 1 kENRI
D ¥/ 0001-2500

E -t/ 42.005T ()

O'Reilly Media, Inc. 448

O'Reilly Media, Inc. & # R L7 UNIX, X Internet b AL EBRBAE
SSHUMHR AT, FEBRILHRLHE.

ME:45 44 The Whole Internet User's Guide & Catalog) (#k4H 2y2s 3L B B8 1EA
ZHHLEHREENS0FFB 2 —) FIGNN (FRAY Internet)AL M), HE
WebSite (% —/~ £ TH PCHIWeb IR 4§ 2384) , O'Reilly Media, Inc.—F 4b-F Internet
b 3:3:00 LIRS

W BERRBZEH, OReilly Media, Inc. REBEMITENNEBHKG —&5—
FHE—RER. SAEHETENEAPBHRBHEL, O'Reilly Media, Inc. R A EE
MR E L 7, XA O'Reilly Media, Inc. BB T —AFEH A 6] T H At AR A
ItHIR 78t . O'Reilly Media, Inc. i BRI 4B A ALLATHEBF R, SEFRNELK
HIEERE K. OReilly Media, Inc.. 2 FiF £ EEHIEE A — iTEHFEMHXH
BHARER, SWER, TMIAERSENE, OReilly Media, Inc. (k1R
#HEF . FHOReilly Media, Inc. E## 5+ BHLIL REEF%H, BiLL O'Reilly
Media, Inc.EHH LtEEEEH 2B,

tH ki it BA

BBV BRI EBRRTZEA, AREEFA-DBERRERROFRH, 5
PLEARI R RE AT T AL AER . Bz B ®EGEHHEE TERIIEM, A,
RS A B AR ST B B R B R Ry, O TR B E R A RFEE — A
TRESMRFER, KEKF LR MEE O'Reilly Meida, Inc AL, #h
S5 R ZAFNNRAIGEARE AL TTGRER B AREE, DRENRSCE 5
TR EMSA T Kd, REOMBELREESES ‘R Hk, HH K
HIR%” RIALIRE.

BANVA IR A L, ol BEr B ENAAT LR A R . BIERLANH A R
B A F 2 IR TAE R BB, X E N U ENE R R RA BT RS, o
EERHEFRWBLFREIL,

BF MR — R B, B,

o (AW Ajax) (RZENKR)

e (Ajax Hacks) (BENER)

o (EAHEM Linux MKNE)Y (BERR)

o (WebiZiIHHATM FE=MR) (HEAR)
o (EREFMZRY GEEIRR)

. {Ruby on Rails: Up and Running) (FZENAR)
e {Ruby Cookbook) (FZENER)

e (Python 3R FE=IR) (HENR)

o (Python BEARFM B iR GEER)

o (Ajax it (REMRR)

o (SERUmBEHY GEER)

o (HPAREIEHERY (BER)

1 o I A A R LU 1. -
n L paer——m—.

Preface

SOFTWARE PROJECT MANAGEMENT is the art and science of planning and leading software
projects. It requires knowledge of the entire software development lifecycle: defining the
vision, planning the tasks, gathering the people who will do the work, estimating the effort,
creating the schedule, overseeing the work, gathering the requirements, designing and pro-
gramming the software, and testing the end product. Throughout the process, there are
many team members who are responsible for these tasks; the project manager needs to have
enough knowledge of their work to make sure the project is staying on track.

To be effective, a project manager must have a wide range of expertise. In this book, we
provide an introduction to all of these areas so that you can guide the rest of your team on
their tasks. We help you run successful software projects, and we help you diagnose and
fix the ones that have gone off track.

Goals of the Book

This is a practical book. This book describes the specific tools, techniques, and practices
that a project manager needs to put in place in order to run a software project or fix an ail-
ing one. A project manager can use this book to diagnose and fix the most serious prob-
lems that plague software projects. It contains essential project management tools,
techniques, and practices, which have been optimized to be as straightforward and easy to

implement as possible. It also contains advice for avoiding the problems that a project
manager will typically encounter when bringing these tools into an organization.

By the time you have read this book, you should be able to:

» Define the scope of your project

e Estimate the effort required to do the work and schedule your project

¢ Conduct thorough reviews of documents and code

¢ Gather software requirements and create specifications

* Effectively manage the design, programming, and testing of the software

* Provide guidance if your project runs into quality problems

¢ Manage an outsourced project

* Make effective changes to the way projects are run in your organization

We have been researching and implementing these tools, techniques, and practices
throughout our combined careers. Each of them is the culmination of years of trial and
error in many different organizations across multiple industries. Every one of these prac-
tices is the solution to a specific, chronic problem. Many people opt to live with the prob-

lem, because the solution seems too complicated. Our ultimate goal in writing this book is
to help you build better software.

Often, the original idea (before we optimized it) came from a book that we read to solve a
specific problem that we encountered on a software project (just like you are doing right
now!). References to some of the books that we found most helpful appear in the text in
order to help you learn more.

Who Should Read This Book

Many software organizations have trouble delivering high-quality software on time. Most
of them have talented team members; almost all of them realize that there is a problem.
People in these organizations may have already read books about management, quality,
and programming. What all of these people have in common is a need to change the way
a software organization works. They may not always recognize the nature of the problem,
or what is causing delays or bugs. What they do know is that something needs to change.

We wrote this book for anyone in a software organization where there are chronic prob-
lems producing software on schedule and without defects. The intended readers of this
book include:

* A project manager responsible for a software development project and/or team

* A programmer, designer, business analyst, architect, tester, or other member of a soft-
ware team looking to improve the product he is working on

xii PREFACE

i WWWM s g

e A quality assurance manager or team member who is attempting to implement defect
prevention, or is responsible for establishing or improving an organization’s software

process
o A consultant hired to improve project management practices, software process, or over-

all software quality in an organization

e A project manager who has been put in charge of a project that has been outsourced

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://www.oreilly.com/catalog/appliedprojectmgmt

We also have a companion site featuring additional information for project managers,
trainers, educators, and practitioners here:

http://www.stellman-greene.com
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O’Reilly
Network, see our web site at:

http://www.oreilly.com

Safari Enabled

. When you see a Safari® Enabled icon on the cover of your favorite technol-
Big.'!!"i. ogy book, that means the book is available online through the O’Reilly Net-
work Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that lets you easily
search thousands of top technology books, cut and paste code samples, download chap-
ters, and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

PREFACE

L SRS SN SN S WM ST SN S L

Acknowledgments

This book would not have been possible without the efforts of many people. First and
foremost, we would like to thank our friends at O’Reilly Media: Andrew Odewahn, Mike
Hendrickson, and Andy Oram. They have provided us with invaluable guidance and sup-
port throughout the entire process. And special thanks to Mary O’Brien, for guiding us
from the first draft to the completed version that you are holding.

We are indebted to our reviewers for the time and effort they put into helping this book be
successful. Without them, this book would contain many factual and conceptual errors.
So, thanks to:

» Scott Berkun « Heather Day

+ Gnaneshwar Dayanand « Matt Doar

+ Oleg Fishel - Karl Fogel

« Tarun Ganguly « Faisal Jawdat
+ Sam Kass » Marc Kellner

+ Dave Murdock + Jayne Gh

« Neil Potter « DVS Raju

« Eric Renkey « Rob Rothman
« Virginia Smith + Lana Sze

« Chris Winters

We would also like to thank our friends at Carnegie Mellon University: Sandra Slaughter
at the Tepper School of Business and Anthony Lattanza at the School of Computer Sci-
ence, who helped us with our initial proposal.

And special thanks go to Lisa Kellner, without whom this would be a much more difficult
book to read, and to Nisha Sondhe for taking the photographs that capture each chapter’s
main concepts (except for Chapter 7, which was taken by Steven Stellman. Thanks Dad!).

Andrew would like to thank Mark Stehlik, Catherine Copetas, Klaus Sutner, and Robert
Harper at the CMU School of Computer Science. Jenny would like to thank Robert Hor-
ton, who exposed her to many of the ideas that later became the practices in this book.
And we would both like to thank Jim Over, Tim Olson, and the rest of the folks from the
Software Engineering Institute who have answered our guestions over the years.

And finally, we would like to thank our families and friends for putting up with our inces-
sant babble about all of the things you're about to read.

Good luck!

—Andrew Stellman and Jennifer Greene
November, 2005

xiv. PREFACE

b R A N A AR S 100 | N M S 2 s e i

TABLE OF CONTENTS

PREFACE xi

1 INTRODUCTION 1
Tell Everyone the Truth All the Time 3
Trust Your Team 4
Review Everything, Test Everything 4
All Software Engineers Are Created Equal 5
Doing the Project Right Is Most Efficient 6
Part I: Tools and Techniques 7

Part I: Using Project Management Effectively 10
PartOne TOOLS AND TECHNIQUES 12
SOFTWARE PROJECT PLANNING 15
Understand the Project Needs 16
Create the Project Plan 23
Diagnosing Project Planning Problems 30

3 ESTIMATION 33
Elements of a Successful Estimate 34
Wideband Delphi Estimation 39
Other Estimation Techniques 48
Diagnosing Estimation Problems 49

% PROJECT SCHEDULES 53
Building the Project Schedule 54
Managing Multiple Projects 66

Use the Schedule to Manage Commitments 69
Diagnosing Scheduling Problems 70

5 REVIEWS 73
Inspections 74
Deskchecks 84
Walkthroughs 86
Code Reviews 87

Pair Programming 91

Use Inspections to Manage Commitments 92
Diagnosing Review Problems 93

6 SOFTWARE REQUIREMENTS 97
Requirements Elicitation 98

Use Cases 105

1. R AEES 3 N S AR P I AN R A R B

vili

TABLE OF CONTENTS

Part Two

10

12

Software Requirements Specification
Change Control

Introduce Software Requirements Carefully
Diagnosing Software Requirements Problems

DESIGN AND PROGRAMMING

Review the Design

Version Control with Subversion

Refactoring

Unit Testing

Use Automation

Be Careful with Existing Projects

Diagnosing Desi¢n and Programming Problems

SOFTWARE TESTING

Test Plans and Test Cases

Test Execution

Defect Tracking and Triage

Test Environment and Performance Testing
Smoke Tests

Test Automation

Postmortem Reports

Using Software Testing Effectively
Diagnosing Software Testing Problems

USING PROJECT MANAGEMENT EFFECTIVELY

UNDERSTANDING CHANGE
Why Change Fails
How to Make Change Succeed

MANAGEMENT AND LEADERSHIP

Take Responsibility

Do Everything Out in the Open

Manage the Organization

Manage Your Team

MANAGING AN OUTSOURCED PROJECT
Prevent Major Sources of Project Failure
Management Issues in Outsourced Projects
Collaborate with the Vendor

PROCESS IMPROVEMENT

Life Without a Software Process
Software Process Improvement
Moving Forward
BIBLIOGRAPHY

INDEX

110
120
124
127

131
133
134
149
156
165
166
167

171
172
178
180
181
183
184
186
189
196

200

203
204
214

231
232
236
238
243

255
256
260
268

277
278
282
293
295

303

i Saa g R N N B N R SN ¢ i i R el st & 1! 1

CHAPTER ONE

Introduction

2 4 N 1L S _smamm SESENNEL | G 01 0 SN (S 08 NSRRI W30 =T

SAY A PROJECT THAT STARTED OUT AS A SMALL, STOPGAP UTILITY has turned into a raging behe-
moth, sucking seemingly unlimited time from your programmers. Or the president of
your company announced that your project will be done this week, even though you
know that it still has an enormous number of bugs. Or your team delivered the software,
only to have users complain that an entire feature is missing. Or every time the team fixes
a bug, they seem to uncover a dozen more—including ones that you know were fixed six
months ago. If you are a software project manager, you may recognize these problems (or
similar ones) from your own career.

Many software organizations have problems delivering quality software that is finished on
time and meets the users’ needs. Luckily, most software project problems have surpris-
ingly few root causes, and these causes are well understood. Solutions to these problems
have been discovered, explained, and tested in thousands of software organizations
around the world. These solutions are generally straightforward and easy to implement.
However, they are not always intuitive to people who do not understand project manage-
ment, and that makes them difficult to introduce. The goal of this book is to teach you
about these solutions and help you integrate them into your own organization.

But this book is about more than just solutions to typical project problems. Every single
technique, practice, and tool also helps establish an environment of trust, openness, and
honesty among the project team, the management of the organization, and the people
who will use or benefit from the software. By sharing all of your project information, both
your team and your managers can understand your decisions, and they can see exactly
why you made them.

It’s easy to forget that project management is more than just a technical engineering skill.
Good project management really boils down to a few basic principles that, if you keep
them in mind, will help guide you through any software project:

* Make sure all decisions are based on openly shared information.

* Don't second-guess your team members’ expertise.

* Introduce software quality from the very beginning of the project.
¢ Don’t impose an artificial hierarchy on the project team.

* Remember that the fastest way through the project is to use good engineering practices.

A project manager needs to understand every facet of software development in order to
make good judgements. You don’t need to be a programmer, software tester, require-
ments analyst, or architect in order to be a good project manager. But you do need to
know what these people do, why they are on your team, the common pitfalls they suc-
cumb to, and how to fix them. You need to be able to read and understand the documents
that they create and provide intelligent feedback. And by relying on objective analysis
(rather than gut feelings, personal preferences, or a perceived hierarchy within your
team), you can use this knowledge in order to make decisions based on the best interests
of the project.

2 CHAPTER ONE

Tell Everyone the Truth All the Time

The most important principle in this book is transparency. A project manager constantly
makes decisions about the project. If those decisions are based on real information that’s
gathered by the team and trusted by management, that’s the most likely way to make sure
the project succeeds. Creating a transparent environment means making all of that infor-
mation public and explaining the rationale behind your decisions. No software project
goes exactly as planned; the only way to deal with obstacles is by sharing the true nature
of each problem with everyone involved in the project and by allowing the best solution
to come from the most qualified people.

But while anyone would agree with this in principle, it’s much harder to keep yourself
and your project honest in practice. Say you're a project manager, and your project is run-
ning late. What do you do if your boss—much to your surprise—announces to the world
that your project will be done on time? Unfortunately, when faced with this situation,
most project managers try to change reality rather than deal with the truth. It’s not hard
to see why that approach is appealing. Most people in software engineering are very posi-
tive, and it’s not hard to convince them that an unrealistic deadline is just another techni-
cal challenge to be met. But the passage of time is not a technical challenge, and if the
expectations are unrealistic, then even the most talented team will fail to meet them. The
only real solution to this problem is to be open and honest about the real status of the
project—and that’s going make your boss unhappy.

And so, instead of telling the truth, many project managers faced with a deadline that’s
clearly unrealistic will put pressure on their team to work late and make up the time. They
silently trim the scope, gut quality tasks, start eliminating reviews, inspections, and pretty
much any documentation, and just stop updating the schedule entirely. And, above all,
they wait until the very last minute to tell everyone that the project is late.., hoping
against hope that luck, long hours, and a whole lot of coffee will correct the situation.

And sometimes it works... sort of, until the users have to work around bugs or missing
features, until programmers have to start patching the software, and until managers have
to go on a charm offensive in order to smooth over rough relations among everyone
involved. Even if the deadline was met, the software was clearly not really réady for
release. (And that’s assuming the team even managed to squeeze it out on time!)

That's why the most important part of building better software is establishing transpar-
ency. It’s about making sure that, from the very beginning of the project, everyone agrees
on what needs to be built, how long it will take to build it, what steps will be taken in
order to complete the project, and how they will know that it’s been done properly. Every
tool, technique, and practice in this book is based on the principles of freely sharing infor-
mation and keeping the entire project team “in the loop” on every important decision.

INTRODUCTION

i ks R § RSN R AN | e i G R N 15t B s

Trust Your Team

If you are a project manager, it’s your job to be responsible for the project. That means
that you have to do whatever it takes to get the project out the door. But it does not nec-
essarily mean that you know more about the project than everyone else on the team. Yet
many project managers act in exactly this way. They arbitrarily cut down or inflate any
estimates that they don’t understand, or that give them a bad gut feeling. They base their
schedules on numbers that they simply made up. And, most importantly, they make every
project decision based on how it will affect the schedule, instead of corisidering how it will
affect the software.

Managing a project is all about forming a team and making sure that it is productive. The
best way to do that is to rely on the expertise of the team members. Any project manager
who tries to micromanage his team will immediately get overwhelmed, and the project
will come screeching to a halt.

Every single role in a software project requires expertise, skill, training, and experience.
There is no way that one person can fill all of those different roles—she would need sev-
eral lifetimes just to gain enough knowledge of each discipline! Luckily, nobody has to do
it alone: that’s why you have a team full of qualified people. It’s up to them to recommend
the best course of action at each stage of the project; it’s up to you to make informed deci-
sions based on their recommendations.

If you don’t have a good reason to veto an idea, don’t do it. Usually, the people on your
team know best what it takes to do their job. The most important thing that you can do to
support them is to trust them and listen to them.

However, you cannot blindly trust your team. You need to evaluate their ideas in relation
to solid engineering principles. This is why the first part of this book goes beyond “tradi-
tional” project management (creating project plans, developing estimates, building sched-
ules, etc.) to cover all parts of a software project. Every project manager needs to
understand at least the basic principles of software requirements engineering, design and
architecture, programming, and software testing in order to guide a software project
through all of the phases of development.

Review Everything, Test Everything

Reviews get a bad rap. Many people see them as frivolous. “In a perfect world,” many
project managers say, “we would review all of our documents. But we live in the real
world, and we just don’t have time.” Others feel that the only reason for a review is to
force various people to sign off on a document—as if a signature on a page somehow guar-
antees that they agree with everything that it's stapled to.

The purpose of a review is not to make a perfect document or to generate a page of signa-
tures. Rather, a review does two things: it prevents defects in the software and it helps the
project manager gain a real, informed commitment from the team. What's more, it’s

4 CHAPTER ONE

R H ﬂmmm;:.m "

important to recognize that no review is perfect—and that’s just fine. It may not be possi-
ble to catch 100% of the defects before coding has started, but a good review will catch
enough defects to more than pay for the time it took to hold the review.

1t is always faster and cheaper to hold a review meeting than it is to skip it, simply because
it’s much easier to fix something on paper than it is to build it first and fix it later. When a
review turns up an error that takes a few minutes to fix in a document, it saves the team
the hours, days, or weeks that it would take to fix the error once it has been built into the
software. But even more importantly, reviews frequently uncover errors in documents
whose resolution requires a lot of discussion and decision-making. Errors like this can
completely destroy a software project if they make it all the way into the code.

Many project managers try to schedule reviews, only to meet with an enormous amount
of resistance from everyone around them. Peers, project team members, and senior man-
agers all seem to resist the idea of “yet another meeting.” Oddly, the same project manag-
ers who are unable to scrape together an hour and a half to review a scope document at
the beginning of the project generally have no difficulty whatsoever scheduling lengthy,
tedious weekly status meetings with no agenda, goal, or purpose. (Of course, not all
project status meetings have to be run that way!)

The truth is that there is no such thing as wasted time in a review. On average, every hour
spent reviewing and repairing documents saves well over an hour later in the project. This
is true because it catches costly errors early on in the project, when they are cheap to fix.

But reviews have other valuable benefits as well. By bringing team members into a room

to evaluate each others’ work, reviews foster respect among the team members for every-
one’s contributions. And, most importantly, a review results in a real commitment to the

work that is produced by the team, not just a signature.

Testing—whether it is unit testing, functional testing, performance testing or regression
testing—is just as important, and just as likely to be dismissed as unaffordable or “idealis-
tic.” Yet software testing activities are just as cost-effective as reviews. The team can’t “test
in” quality at the end of a project just by tacking on some testing tasks. Testing must be
planned from the beginning and then supported throughout the entire project. To come
up with a quality product, the entire team needs to actively look for defects at every stage,
in every document, and in the software. It’s the project manager’s responsibility to make
sure that this happens.

All Software Engineers Are Created Equal

A software project requires much more than just writing code. There are all sorts of work
products that are produced along the way: documents, schedules, plans, source code, bug
reports, and builds are all created by many different team members. No single work prod-
uct is more important than any other; if any one of them has a serious error, that error
will have an impact on the end product. That means each team member responsible for
any of these work products plays an important role in the project, and all of those people
can make or break the final build that is delivered to the users.

INTRODUCTION

There are many project managers who, when faced with a disagreement between a pro-
grammer and a tester, will always trust the programmer. This same project manager might
always trust a requirements analyst or a business analyst over a programmer, if and when
they disagree. Many people have some sort of a hierarchy in their heads in which certain
engineering team members are more valuable or more skilled than others. This is a dan-
gerous idea, and it is one that has no place on an effective project team.

One key to building better software is treating each idea objectively, no matter who sug-
gests it or whether or not it’s immediately intuitive to you. That’s another reason the prac-
tices, techniques, and tools in this book cover all areas of the software project. Every one
of these practices is based on an objective evaluation of all of the important activities in
software development. Every discipline is equally important, and everyone on the team
contributes equally to the project. A software requirements specification (SRS), for exam-
ple, is no more important than the code: the code could not be created without the SRS,
and the SRS would have no purpose if it weren’t the basis of the software. It is in the best
interest of everyone on the team to make sure that both of them have as few defects as
possible, and that the authors of both work products have equal say in project decisions.

The project manager must respect all team members, and should not second-guess their
expertise. This is an important principle because it is the basis of real commitments. It’s
easy for a senior manager to simply issue an edict that everyone must build software with-
out defects and do a good job; however, this rarely works well in practice. The best way to
make sure that the software is built well is to make sure that everyone on the team feels
respected and valued, and to gain a true commitment from each person to make the soft-
ware the best it can be.

Doing the Project Right Is Most Efficient

The first part of this book is a presentation of techniques, tools, and practices for every
phase of a software project. They are designed to be implemented one at a time and in any
order (with a few restrictions). This means that you have a lot of freedom to choose the
approach that is best for your project.

But no matter which one you choose to implement first, you can be sure that your project
will be better off with the practice than it would be without it. This is because building the
software correctly the first time is always preferable to doing it wrong and having to go
back and fix it.

Every practice in this book is designed to help you build software efficiently and accurately.
What's more, there are many ways to implement every single one of these practices. We put
a great deal of effort into developing the most efficient version of each tool, technique, or
practice we present in this book. We did this by stripping out as many of the “bells and whis-
tles” as possible from each practice without comprormising its basic integrity.

There are more complex and involved ways to implement every single idea in this book.
Wherever possible, there are references that will point you to more in-depth reading that

6 CHAPTER ONE

