Leland N. Edmunds, Jr.

Cellular and Molecular Bases of Biological Clocks

Models and Mechanisms for Circadian Timekeeping

# Cellular and Molecular Bases of Biological Clocks

Models and Mechanisms for Circadian Timekeeping

With 156 Illustrations



14

Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Leland N. Edmunds, Jr.

Department of Anatomical Sciences
School of Medicine, Health Science Center
State University of New York
at Stony Brook
Stony Brook, New York 11794, USA

Library of Congress Cataloging-in-Publication Data Edmunds, Leland N.
Cellular and molecular bases of biological clocks. Bibliography: p. Includes indexes.
1. Circadian rhythms. 1. Title.
OP84.6.E36 1988 574.1'882 87-16632

© 1988 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, New York 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication, even if the former are not especially identified, is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Media conversion by David E. Scham Associates, Inc., Metuchen, New Jersey. Printed and bound by R.R. Donnelley & Sons, Harrisonburg, Virginia. Printed in the United States of America.

9 8 7 6 5 4 3 2 1

ISBN 0-387-96559-9 Springer-Verlug New York Berlin Heidelberg ISBN 3-540-96559-9 Springer-Verlag Berlin Heidelberg New Yalk

### **Preface**

As Bünning (1973) noted in his prefatory remarks, to suggest the existence of an endogenous diurnal rhythm was generally regarded even as late as 1955 as subscribing to a mystical or metaphysical notion. One might argue justifiably that the field of biological rhythms emerged as a discipline (often designated as chronobiology) with the Symposium on Biological Clocks held in 1960 at Cold Spring Harbor, New York. The tens of thousands of papers that have been published since this important meeting attest to the fact that the periodic behavior of living systems, rather than being in some sense pathological—or at the very least abnormal—and confined to a very small number of organisms and tissues, is the normal state of affairs, the rule rather than the exception.

A particularly intriguing class of biological periodicity is reflected in the large number of well-documented persisting circadian rhythms, having periods of approximately 24 hours, that occur at every level of eukaryotic organization. Despite their importance, many reviews of rhythmic phenomena stop short of a detailed consideration of these characteristically longer-period rhythms, perhaps because a convincing explanation of this very same property, together with that of temperature compensation of the free-running period, has not as yet yielded to experimental analysis. Small wonder then that a lead editorial in *Nature* some years ago (231:97–98, 1971) somewhat plaintively queried why so little was known about the biological clock and suggested that it was time to wind it up. Present-day grant review panels, some 15 years later, seem to echo this theme even more stridently!

Nevertheless, progress has been made. The Dahlem Conference on The Molecular Basis of Circadian Rhythms, held in Berlin over a decade ago (Hastings and Schweiger, 1976), admirably summarized in its unique format the most exciting current trends at the time (membranes were hot) and is still quite useful as a reference work. This monograph attempts to update this treatment and consider some of the more provocative developments in the field (as, for example, those obtained with the powerful approach of molecular genetics). Its title, nevertheless, is a bit presumptuous. We still cannot clearly delineate the molecular basis of circadian rhythmicity.

**3** ; **3**, · · ·

and we will have to expand our treatment somewhat to include progress made at the cellular and biochemical levels as well.

The layout of the book emulates that of a kind of sextet; the outer two movements, consisting of a brief introduction to circadian rhythms and a final section treating general theoretical and applied aspects, flank an inner quartet of chapters comprising the core of the book. The first of these chapters (chapter 2) surveys circadian organization at the cellular level and describes the most important eukaryotic microorganisms that have served as experimental material for the biochemical and molecular analysis to follow. Chapter 3 discusses in some detail the interaction of cell division cycles and circadian oscillators. Chapter 4 treats the results obtained by several major experimental lines of attack on circadian clock mechanisms. Finally, the various biochemical and molecular models for circadian oscillators that have been constructed on the basis of the data presented earlier are outlined in chapter 5, along with their formal predictions and the degree to which they have been validated or disconfirmed.

Where appropriate, ultradian and other noncircadian periodicities are discussed (such as the glycolytic cycle—perhaps the best understood biochemical oscillator, and for that reason, instructive as a possible mechanism whereby longer periods might be generated), and parallels are drawn to the recent explosion of work on neuronal oscillators (Berridge et al., 1979; Carpenter, 1981, 1982). Although the chapters are designed to be read sequentially, particularly by the potential initiate to the field, it is unlikely that they can compete successfully with a good concert, movie, or home videotape. Consequently, those readers at least somewhat versed in this arcane area should also find it profitable to skip among the various sections. To this end, there is extensive cross-referencing and a rather large bibliography is appended (literature search ended June 1987) with name and date citations' being given in the text.

In a work of this scope, sins of omission and commission unfortunately are inevitable. I will appreciate learning of such errors, distortions and misinterpretations. I thank all those authors who have given me permission to use their published illustrations; Dr. Colin S. Pittendrigh, who introduced me to the field; the National Science Foundation, which has supported my own research throughout the years; Prof. Régis Calvayrac, Directeur de la Laboratoire des Membranes Biologiques, Université Paris VII, who provided a home away from home for the finishing touches on the manuscript; Dr. Charles F. Ehret, who read the entire work; and Dr. Danielle L. Lavel-Martin, who aided in the production of the manuscript. I am grateful to all my students in my course on Biological Clocks over the past 20 years who helped me justify my existence, particularly those special classes at the University of Tel Aviv and the Université Paris VII who endured shortened versions of this monograph during my tenure as visiting professor there.

Stony Brook, New York

Leland N. Edmunds, Jr.

## **Abbreviations**

| LL                           | continuous illumination                                     |
|------------------------------|-------------------------------------------------------------|
| DD                           | continuous darkness                                         |
| LD                           | light-dark cycle                                            |
| LD: x,y                      | light-dark cycle comprising x hours of light and y hours of |
|                              | dark                                                        |
| WC: x,y                      | temperature cycle comprising x hours of warmer and y        |
|                              | hours of colder temperatures (°C)                           |
| <b>T</b> .                   | period of an LD cycle or other periodic Zeitgeber           |
|                              | (environmental cue)                                         |
| τ                            | average period of a free-running rhythm in constant         |
|                              | conditions                                                  |
| ø                            | phase of a rhythm                                           |
| Ø <sub>r</sub>               | phase reference point, or phase marker                      |
| $+\Delta \phi, -\Delta \phi$ | change (advance, delay) in phase (phase shift)              |
| ZT                           | environmental (Zeitgeber) time (where ZT 0 corresponds      |
| 2.                           | to the onset of light)                                      |
| CT                           | circadian time (CT 0 indicates the phase point of a free-   |
| 0.                           | running rhythm that has been normalized to 24 hours and     |
|                              | corresponds to that occurring at the onset of light in a    |
|                              | LD: 12,12 reference cycle)                                  |
| PRC                          | phase-response curve [plot of the phase shift of a free-    |
| INC                          | running circadian rhythm engendered by a perturbing light   |
|                              | (or other) signal as a function of the circadian time at    |
|                              | which it was applied]                                       |
| _                            | average generation (doubling) time of a population of cells |
| g                            | average step-size, or factorial increase in cell            |
| SS                           | concentration (plateau to plateau) after a phased, or       |
|                              |                                                             |
|                              | synchronized division step                                  |
| CAM                          | crassulacean acid metabolism                                |
| CAN                          | compound action potential                                   |
|                              | cell division cycle                                         |
| CDC                          | cen division cycle                                          |
|                              |                                                             |

#### xvi Abbreviations

G<sub>q</sub> fundamental quantal cell cycle

PA photosynthetic activity PC photosynthetic capacity

PSI(II) photosystem I (II) SCN suprachiasmatic nuclei

AC adenyl cyclase ANISO anisomycin cAMP cyclic AMP CAP chloramphenicol

CCCP carbonyl cyanide *m*-chlorophenyl hydrazone

CPZ chlorpromazine CHX cycloheximide

DCCD N, N'-dicyclohexylcarbodiimide

DCMU diuron, 3-(3,4-)dichlorophenyl 1)-1, 1-dimethyl urea

DES diethylstilbestrol DNP dinitrophenol

FCCP p-trifluoromethoxyphenylhydrazone

FUdR 5-fluoro-2'-deoxyuridine MDH malate dehydrogenase

NAD(H) nicotinamide adenine dinucleotide

NADP(H) nicotinamide adenine dinucleotide phosphate

PDE phosphodiesterase

PEPC phosphoenolpyruvate carboxylase

PFK phosphofructokinase

PUR puromycin TFP trifluoperazine

VIP vasoactive intestinal polypeptide

VP vasopressin

I trifle with my papers from time to time; It is one of the lesser frailities.

Horace

Were I to await perfection, My book would never be finished.

Tai T'ung, 13th Century Chinese scholar; The Six Scripts: Principles of Chinese Writing

A clock is a clock is a clock.

Science News, 1983, 124(22): 346

# Contents

|             | acereviations                                                   | vii<br>xv   |
|-------------|-----------------------------------------------------------------|-------------|
| ı.          | Introduction                                                    | ı           |
| l. <b>I</b> | Temporal Organization                                           | 1           |
| 1.2         | General Properties of Circadian Rhythms                         | 3           |
| 1.3         | Analogies with Shorter Periodicities                            | 3<br>5<br>5 |
|             | 1.3.1 An Atlas of Cellular Ultradian Periodicities              | 5           |
|             | 1.3.2 The Glycolytic Oscillator                                 | 7           |
|             | 1.3.3 Rhythmic Flashing of Fireflies                            | 8           |
| <b>.</b>    | Microorganisms  Cincoding Phythese in Protocol                  | 12<br>13    |
| 2.1         | Circadian Rhythms in Protozoa                                   | 13          |
|             | 2.1.1 Tetrahymena spp                                           | 13          |
|             | Rhythms of Cell Division                                        | 13          |
|             | Physiological Rhythms Observed During the Infradian Growth Mode | 16          |
|             | Circadian Rhythmicity in Metabolism and                         | 10          |
|             | Biochemistry                                                    | 17          |
|             | 2.1.2 Paramecium spp.                                           | 21          |
| 2.2         | Circadian Rhythms in Unicellular Algae                          | 22          |
|             | 2.2.1 Acetabularia spp                                          | 22          |
|             | 2.2.2 Chlamydomonas spp                                         | 26          |
|             | 2.2.3 Euglena spp                                               | 28          |
|             | Circadian Rhythms of Cell Division                              | 33          |
|             | Circudian Physhme of Call Motility                              | 11          |

#### x Contents

|         | Rhythm of Phototaxis                                           |
|---------|----------------------------------------------------------------|
|         | Dark Motility Rhythm (Dunkelbeweglichkeit)                     |
|         | Rhythm of Cell Settling                                        |
|         | Rhythms in Photosynthetic Capacity                             |
|         | Rhythm in Cell Shape                                           |
|         | Oscillatory Enzymatic Activities                               |
|         | 2.2.4 <i>Gonvaulax</i> spp                                     |
|         | Circadian Rhythms in Bioluminescence:                          |
|         | Physiological Characteristics                                  |
|         | Circadian Rhythms in Photosynthesis                            |
| 2.3     | Circadian Rhythms in Fungi                                     |
| - • • • | 2.3.1 <i>Neurospora</i> spp                                    |
|         | The Rhythm of Conidiation                                      |
|         | Expression in Various Strains                                  |
|         | Light Effects                                                  |
|         | Temperature Effects                                            |
|         | Other Factors                                                  |
|         | Rhythm of Carbon Dioxide Production                            |
|         | Rhythm in Adenylate and Pyridine Nucleotides                   |
|         | Rhythms in Nucleic Acid Metabolism                             |
|         | Rhythms in Enzymatic Activities                                |
|         | Rhythms in Synthesis of Heat-Shock Proteins                    |
|         | Rhythms in Fatty Acids                                         |
|         | 2.3.2 Saccharomyces spp                                        |
|         | 2.3.2 Succentionifices approved                                |
|         |                                                                |
| 3.      | Cell Cycle Clocks                                              |
| ٠.      |                                                                |
| 3.1     | Regulation of the Cell Division Cycle                          |
|         | 3.1.1 Probabilistic Models                                     |
|         | 3.1.2 Deterministic Models                                     |
|         | Dependent Pathways                                             |
|         | Cell Sizers                                                    |
|         | Autonomous Timers: Cell Cycle Clocks and                       |
|         | Oscillators                                                    |
|         | Relaxation Oscillators                                         |
|         | Limit Cycle Oscillators                                        |
|         | Quantal Cell Cycles                                            |
| , .     | 1 (2) 11 (2) 12                                                |
| 3.2     |                                                                |
|         | 3.2.1 Interaction of Circadian Oscillators with the Cell Cycle |
|         | Circadian Oscillators and the CDC in                           |
|         | Phytoplankton and Other Unicells                               |
|         | Phytopiankton and Other Oniceis                                |
|         | O' E. Clash Cantast at that the in                             |
|         | Circadian Clock Control of the CDC in                          |
|         | Circadian Clock Control of the CDC in  Euglena  Entrainability |

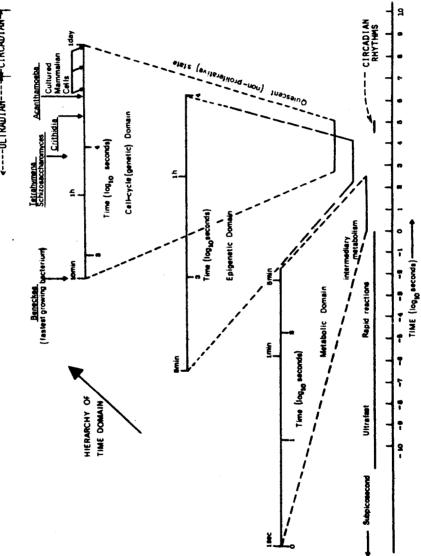
|     | Contents                                              | XI  |
|-----|-------------------------------------------------------|-----|
|     | Persistence                                           | 134 |
|     | Initiation                                            | 139 |
|     | Phase Shiftability                                    | 141 |
|     | Singularity Point                                     | 145 |
|     | Temperature Compensation                              | 148 |
|     | Circadian Rhythms of Mammalian Cell                   | 140 |
|     | Proliferation                                         | 150 |
|     | 3.2.2 Ultradian, Circadian, and Infradian Interfaces  | 153 |
|     | The Characteristics of the Oscillator                 | 153 |
|     | Insertion and Deletion of Time Segments in            | •00 |
|     | Cell Cycles                                           | 155 |
|     | The Circadian-Infradian Rule                          | 160 |
|     |                                                       |     |
| ١.  | Experimental Approaches to Circadian Clock            |     |
|     | Mechanisms                                            | 166 |
| .1  | Quest for an Anatomical Locus: Autonomous Oscillators |     |
|     | in Isolated Organs, Tissues, and Cells                | 166 |
|     | 4.1.1 Circadian Pacemakers at the Organ and Tissue    |     |
|     | Levels                                                | 167 |
|     | The Hypothalamus                                      | 168 |
|     | Gastropod Eyes                                        | 174 |
|     | The Pineal Gland                                      | 177 |
|     | Pineal Biochemistry                                   | 178 |
|     | Pineal Physiology and Circadian Organization .        | 179 |
|     | Pineal Pacemakers In Vitro                            | 181 |
|     | Other Animal Organs and Tissues                       | 185 |
|     | Plant Pulvini and Stomata                             | 186 |
|     | 4.1.2 Circadian Rhythms in Isolated Cells             | 187 |
|     | 4.1.3 Subcellular Circadian Rhythmicity               | 190 |
| 1.2 | Tracing the Entrainment Pathway for Light Signals     | 193 |
|     | 4.2.1 Nature and Localization of the Photoreceptor    | 193 |
|     | Plant Photoreceptors                                  | 194 |
|     | Photoreceptors in Animals                             | 197 |
|     | 4.2.2 Coupling Links Between Receptor and Clock       | 198 |
|     | Light-Blocking Experiments                            | 199 |
|     | Light-Mimicking Experiments                           | 200 |
|     | Entrainment Pathway for Serotonin                     | 200 |
| 4.3 | Dissection of the Clock: Perturbation by Chemicals    | 206 |
|     | 4.3.1 Nonspecific Compounds and Respiratory           | 200 |
|     | Inhibitors                                            | 209 |
|     | Early Studies: The Chemical Shelf                     | 209 |
|     | Deuterium Oxide                                       | 210 |
|     | Respiratory Inhibitors                                | 211 |
|     | Energy Charge                                         | 213 |

|     | 4.3.2        | Inhibitors of Macromolecular Synthesis           |
|-----|--------------|--------------------------------------------------|
|     |              | Transcription of DNA                             |
|     |              | Translation and Protein Synthesis                |
|     |              | Acetabularia                                     |
|     |              | Gonyaulax                                        |
|     |              | Neurospora                                       |
|     |              | Aplysia                                          |
|     | 4.3.3        | Membrane-Active Agents                           |
|     |              | Alcohols                                         |
|     |              | Fatty Acids                                      |
|     |              | lons                                             |
|     |              | Potassium and Other Monovalent Ions              |
|     |              | Calcium                                          |
|     |              | Membrane ATPases                                 |
|     |              | Cyclic AMP                                       |
| 4.4 | Dissec       | ction of the Clock: Molecular Genetics           |
| ••• | 4.4.1        | Isolation of Clock Mutants                       |
|     | 7.7.1        | Chlamydomonas                                    |
|     |              | Neurospora                                       |
|     |              | Drosophila                                       |
|     |              | Circadian Clock Mutants                          |
|     |              |                                                  |
|     | 4.4.2        | Ultradian Clock Mutants                          |
|     | 4.4.2        | Recombinant DNA Studies: Cloning Clock Genes     |
|     |              | Isolation of a Clock Gene                        |
|     |              | Restoration of Biochemical Rhythms in            |
|     |              | Transgenic Drosophila                            |
|     |              | The Product of the per Locus                     |
|     |              | Molecular Analysis of Neurospora Clock           |
|     |              | Genes                                            |
|     | 4.4.3        | Alteration of Clock Properties in Biochemical    |
|     |              | Mutants                                          |
|     |              | Respiratory and Photosensitive Pigments          |
|     |              | Cyclic AMP                                       |
|     |              | Fatty Acid Metabolism and Other Biosynthetic     |
|     |              | Pathways                                         |
|     |              | Oligomycin and Cycloheximide Resistance          |
| 4.5 | Chara        | acterizing the Coupling Pathway: Transducing     |
|     | Me           | chanisms Between Clocks and Their Hands          |
|     | 4.5.1        | Rhythms of Bioluminescence in Gonyaulax          |
|     | 4.5.2        | Rhythms of Photosynthesis in Gonyaulax           |
|     |              | , , , , , , , , , , , , , , , , , , , ,          |
| 5.  | Biocl        | hemical and Molecular Models for Circadian       |
|     | Clock        | ks                                               |
| 5.1 | lo 1/4       | tro Molecular Models                             |
| 5.1 |              | nemical Feedback Loop and Network Models         |
| 1 / | 1 2 14 34 16 | ornon an refermack i mon and Melly/Ory 8/10/04/6 |

|     |       | Contents                                        | xiii       |
|-----|-------|-------------------------------------------------|------------|
|     | 5.2.1 | Ultradian Metabolic Oscillators                 | 305        |
|     |       | The Glycolytic Oscillator in Yeast              | 305        |
|     |       | Elements of the Oscillator                      | 305        |
|     |       | Modeling Circadian Clocks with a Glycolytic-    |            |
|     |       | Type Oscillator                                 | 308        |
|     |       | The Cyclic AMP Oscillator of the Cellular       |            |
|     |       | Slime Mold                                      | 311        |
|     | 5.2.2 | Cell Energy Metabolism                          | 313        |
|     |       | Energy Charge                                   | 313        |
|     |       | The Deposition Effect and the Generation of     |            |
|     |       | Circadian Periods                               | 316        |
|     |       | Temperature-Compensated Ultradian Clocks in     |            |
|     |       | Respiration                                     | 317        |
|     | 5.2.3 | Coupled Oscillators                             | 318        |
|     | 5.2.4 | Periodic Enzyme Synthesis and Other Cyclic      |            |
|     |       | Epigenetic Events                               | 321        |
|     |       | Periodic Enzyme Synthesis                       | 322        |
|     |       | Self-Sustained Enzyme Oscillations              | 322        |
|     |       | Models of Microbial Enzyme Synthesis            | 330        |
|     |       | Other Cyclic Epigenetic Events                  | 333        |
|     | 5.2.5 | Circadían Biochemical Oscillators               | 334        |
|     |       | Cyclic AMP Models                               | 334        |
|     |       | Models Based on the Mitochondrial Calcium       |            |
|     |       | Cycle                                           | 336        |
|     | 5.2.6 | Infradian Metabolic Oscillators                 | 342        |
|     |       | Regulation of Metabolic Pathways in             |            |
|     |       | Noncircadian Sporulation Rhythms                | 343        |
|     |       | Seasonal Rhythms and Photoperiod'sm             | 344        |
| 5.3 |       | scriptional (Tape-Reading) Models               | 346        |
|     | 5.3.1 | Specificity and Antispecificity Factors in Time |            |
|     |       | Metering                                        | 348        |
|     | 5.3.2 | The Chronon Model                               | 348        |
|     | 5.3.3 | Chronogenes and Cell Division Cycles            | 352        |
| 5.4 | Mem   | brane Models                                    | 355        |
|     | 5.4.1 | Early Membrane Models                           | 356        |
|     | 5.4.2 | Coupled Translation-Membrane Model              | 361        |
|     | 5.4.3 | Monovalent Ion-Mediated Translational Control   |            |
|     |       | Model                                           | 363        |
|     | 5.4.4 | Other Variations on the Membrane Model Theme    | 364        |
| 5.5 | Probl | ems and Prospects                               | 366        |
| 6.  | Gen   | eral Considerations and Conclusions             | 368        |
| ••  | J-111 |                                                 | 2,         |
| 6.1 |       | ution of Circadian Rhythmicity                  | 368<br>368 |
|     | 411   | Lower Folgation for Undagged Clarks             | A CAX      |

#### xiv Contents

|      | 6.1.2            | Ultradian Clocks: Small Steps Toward Circadian    |
|------|------------------|---------------------------------------------------|
|      |                  | Oscillators?                                      |
| 6.2  | Multic           | ole Cellular Oscillators                          |
|      | 6.2.1            | Intracellular Clockshops                          |
|      | 6.2.2            |                                                   |
|      |                  | Oscillators                                       |
| 6.3  | The B            | reakdown of Temporal Organization at the Cellular |
|      |                  | el                                                |
|      |                  | Dysfunction of Cellular Pacemakers in Pathology   |
|      |                  | and Disease                                       |
|      |                  | The Cardiac Pacemaker                             |
|      |                  | Tremor                                            |
|      |                  | Epilepsy                                          |
|      |                  | Aging Clocks?                                     |
|      | 6.3.2            | Cancer: The Malignant Transformation              |
| 6.4  |                  | ar Aspects of Chronopharmacology and              |
|      |                  | onotherapy                                        |
| 6.5  |                  | ar Clocks in Development and Aging                |
|      |                  | Timing of Developmental Events                    |
|      | 6.5.2            | •                                                 |
|      | 6.5.3            | Aging: Life Cycle Clocks?                         |
| 6.6  |                  | gue                                               |
| 0.0  | z.pno.           | <del></del>                                       |
| Ref  | erenc <b>e</b> s | ***************************************           |
| Ant  | hor Ind          | lex                                               |
| 1101 |                  |                                                   |


### 1 Introduction

#### 1.1 Temporal Organization

As Pittendrigh noted in 1961 in an engaging essay, biologists are confronted with a continuously reproducing and evolving set of highly organized living systems. An organism that has thrived by differential reproductive success is said to be "adapted," and its adaptation is reflected in its total organization. This organization is strongly history-dependent, having arisen through the twin processes of natural selection and adaptation. Biological problems, therefore, pivot on the complexities of biological organization.

It is almost self-evident that the spatial organization and the functioning of living forms are inextricably intertwined. Of equal importance, however, is the temporal dimension: at the physiological level, for example, not only must the *right* amount of the *right* substance be at the *right* place, but also this must occur at the *right* time (Halberg, 1960). This is true also for the organism itself, which often must be positioned in time in favorable biotic or physical conditions. Since the environment is highly periodic with respect to many of its variables, it would not be surprising (indeed, it would be essential) for the organism to adapt to these cyclicities.

Organisms can and do measure astronomical time in some manner—as opposed to the purely private timekeeping reflected in such variable-period physiological rhythms (see Section 1.3) as heartbeat and alpha-brain waves. This is demonstrated explicitly by four categories comprising diverse phenomena occurring throughout the animal and plant kingdoms: (1) persistent rhythms, having daily (circadian); tidal, lunar (monthly), and yearly (circannual) periods, (2) the *Zeitgedächtnis*, or time sense, of bees and humans, (3) seasonal photoperiodism, wherein many organisms perform a certain function at a specific time of the year by what may be essentially a daily measurement of the length of the day (or night), and (4) celestial orientation and navigation, in which the sun, moon, or stars are used as direction givers, implying a timing system to compensate for their continuously, but predictably, shifting positions (Bünning, 1973; Palmer et al., 1976; Brady, 1982). All four types of timekeeping, or functional bio-



chronometry, have external correlates (generated by the movements of the earth, moon, and sun) to which the organism has adapted. Although the last three kinds commonly are found only in higher organisms and probably are relatively recent, more sophisticated variations on a more ancient evolutionary theme, the first category of persistent rhythms, are displayed commonly in most, if not all, eukaryotic (but not prokaryotic) unicells (however, see Section 6.1.1). An understanding of the physiological and biochemical bases of these simpler clocks, therefore, may be crucial to the elucidation of the higher-level phenomena.

The underlying biological clocks that generate the foregoing types of rhythmicity all possess considerably longer periods than those that give rise to ultrafast and rapid chemical reactions, to biochemical rhythmicities of intermediary metabolism (e.g., glycolytic oscillations), and to those rhythms (such as cellular respiration) commonly observed in the epigenetic and genetic time domains (Lloyd et al., 1982b; see Section 1.3). The time domain, therefore, of circadian rhythms—the primary subject matter of this review—lies at the interface (Fig. 1.1) between the upper border of the genetic domain comprising cell division cycles and those even longer periodicities in the temporal hierarchy of living systems (cf. Fig. 17, p. 72 in Ehret, 1974).

#### 1.2 General Properties of Circadian Rhythms

Circadian rhythmicities, having a period of about 1 day, have been documented throughout the plant and animal kingdoms at every level of eukaryotic organization. Their general characteristics are summarized in Figure 1.2. Typically, they can be synchronized (entrained) by imposed diurnal light or temperature cycles to precise 24-h periods and can be predictably phase-shifted by single light and temperature signals. Yet they are able to free-run for long timespans as persisting rhythms under conditions held constant with respect to most environmental time cues (Zeitgeber), with a natural period close to but seldom exactly 24 h. (Unless otherwise noted, we will always use the term "circadian" in this restricted sense.) Furthermore, the free-running period  $(\tau)$  is remarkably well compensated for changes in the ambient temperature within the physiological range, as might be expected of an accurately functioning oscillator or clock.

FIGURE 1.1. Time domains of living systems. Note that the domain of circadian rhythms, which display periodicities of about a day, lies at the interface between ultradian rhythms (having periods less than 24 h) and longer infradian rhythms (with periods greater than 24 h), and encroaches upon the (genetic) domain of the cell division cycle. (Adapted from Lloyd et al., 1982b, with permission of Academic Press)